
KIT Scientific Reports 7639

1st Annual Workshop Proceedings of the  
Collaborative Project “Fast / Instant Release 
of Safety Relevant Radionuclides from Spent 
Nuclear Fuel” (7th EC FP CP FIRST-Nuclides)

Budapest 09 – 11 October 2012 

Bernhard Kienzler, Volker Metz, Lara Duro, Alba Valls
(eds.)

1st
 A

n
n

u
al

 W
o

rk
sh

o
p

 P
ro

ce
ed

in
g

s 
o

f 
th

e 
C

o
lla

b
o

ra
ti

ve
 P

ro
je

ct
  

“F
as

t /
 In

st
an

t 
R

el
ea

se
 o

f 
Sa

fe
ty

 R
el

ev
an

t 
R

ad
io

n
u

cl
id

es
 f

ro
m

 S
p

en
t 

N
u

cl
ea

r 
Fu

el
” 

 
B

er
n

h
ar

d
 K

ie
n

zl
er

, V
o

lk
er

 M
et

z,
 

La
ra

 D
u

ro
, A

lb
a 

V
al

ls
 (

ed
s.

)





Bernhard Kienzler, Volker Metz, Lara Duro, Alba Valls (eds.) 

1st Annual Workshop Proceedings of the Collaborative Project  
“Fast / Instant Release of Safety Relevant Radionuclides from  
Spent Nuclear Fuel” (7th EC FP CP FIRST-Nuclides)

Budapest 09 - 11 October 2012 



Karlsruhe Institute of Technology

KIT SCIENTIFIC REPORTS 7639



1st Annual Workshop Proceedings of  
the Collaborative Project “Fast / Instant 
Release of Safety Relevant Radionuclides 
from Spent Nuclear Fuel”  
(7th EC FP CP FIRST-Nuclides)

Budapest 09 - 11 October 2012 

Bernhard Kienzler
Volker Metz
Lara Duro
Alba Valls 
(eds.)



Report-Nr. KIT-SR 7639

This report is printed in black and white. The report showing the original colours in 
several photos, tables, figures and logos can be downloaded from the homepage of 
KIT Scientific Publishing. 

Karlsruher Institut für Technologie (KIT)
Institut für Nucleare Entsorgung

Amphos 21 Consulting S. L. 
Passeig de Garcia i Faria, 49 – 51, 10 – 1a

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und  
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

KIT Scientific Publishing 2013
Print on Demand

ISBN 978-3-86644-980-0

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz 
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/



 

 

FOREWORD 

The present document is the proceedings of the 1st Annual Workshop (AW) of the EURATOM FP7 

Collaborative Project FIRST-Nuclides (Fast / Instant Release of Safety Relevant Radionuclides from Spent 

Nuclear Fuel). The electronic version of these proceedings is also available in the webpage of the project 

(http://www.firstnuclides.eu/). The workshop was hosted by MTA-EK and held in Budapest (Hungary) 9th – 11th 

October 2012. The project started in January 2012 and has three years duration. It has 10 beneficiaries and 11 

associated groups. All of them have participated in the 1st AW as well as external interested groups.  

The proceedings serve several purposes. The key purpose is to document and make available to a broad 

scientific community the outcome of the FIRST-Nuclides project. For this reason, a considerable part of the 

project activity reporting is done through the proceedings, together with the outcome of scientific-technical 

contributions and Topical Sessions on different topics of interest for the development of the project. In the  

1st AW of FIRST-Nuclides, the topical session focused on the characteristics and modelling of spent nuclear 

fuel. Additional purposes of the proceedings are to ensure on-going documentation of the project outcome, 

promote systematic scientific-technical development throughout the project and to allow thorough review of the 

project progress. 

All Scientific and Technical papers submitted for the proceedings have been reviewed by the EUG (End-User-

Group). The EUG is a group specifically set up within the project in order to represent the interest of the end 

users to the project and their needs. To this aim, the composition of the EUG includes organisations representing 

national waste management or national regulatory interests and competence.  

The proceedings give only very brief information about the project structure and the different activities around 

the project. More information about the project can be found in detail under http://www.firstnuclides.eu/. 

Thanks are due to all those who submitted Scientific and Technical contributions for review and, especially, the 

workpackage leaders who provided the summary of the different workpackages for publication in these 

proceedings. We also want to give a special thanks to the reviewers, members of the EUG, whose effort and 

hard work reflect their commitment and dedication to the project and ensure a proper direction of the research 

within the project programme. 

 



 

 



 

 

 

 

Table of Contents 

 

THE PROJECT ..................................................................................................................................................... 1 

1ST ANNUAL WORKSHOP ................................................................................................................................. 5 

Objectives ............................................................................................................................................ 5 
RTD sessions ....................................................................................................................................... 5 
Poster presentations ............................................................................................................................. 8 
Topical session .................................................................................................................................... 8 
Additional presentations ...................................................................................................................... 8 
Structure of the proceedings ................................................................................................................ 9 

WP OVERVIEW ................................................................................................................................................. 11 

S + T CONTRIBUTIONS ................................................................................................................................... 27 

POSTERS ........................................................................................................................................................... 207 

TOPICAL SESSIONS ....................................................................................................................................... 211 

PRESENTATIONS BY ASSOCIATED GROUPS ........................................................................................ 223 

 



 

 



 

 

THE PROJECT 

The EURATOM FP7 Collaborative Project “Fast / Instant Release of Safety Relevant Radionuclides 

from Spent Nuclear Fuel (CP FIRST-Nuclides)” started in January 1, 2012 and extends over 3 years. 

The European nuclear waste management organisations contributing to the Technology Platform 

“Implementing Geological Disposal (IGD-TP)” considered the fast / instant release of safety relevant 

radionuclides from high burn-up spent nuclear fuel as one of the key topics in the deployment plan. 

For this reason, the CP FIRST-Nuclides deals with understanding the behaviour of high burn-up 

uranium oxide (UO2) spent nuclear fuels in deep geological repositories.  

The fast / instant release of radionuclides from spent nuclear fuel was investigated in a series of 

previous European projects (such as SFS (Poinssot et al., 2005; Johnson et al., 2004) NF-PRO 

(Sneyers, 2008) and MICADO (Grambow et al., 2010)). In addition, there were several studies mainly 

of the French research programs that investigated and quantified the rapid release (Ferry et al., 2008; 

Lovera et al., 2003; Johnson et al., 2004, 2005). However, several important issues are still open and 

consequently, the CP FIRST-Nuclides aims on covering this deficiency of knowledge, determining, for 

example, the “instant release fraction (IRF)” values of iodine, chlorine, carbon and selenium that are 

still largely unknown.  

Fuel elements from different Light Water Reactors (LWRs), with different enrichments, burn-up and 

average power rates need to be disposed of in Europe. This waste type represents one of the sources 

for the release of radionuclides after loss of integrity of a disposed canister. The quantification of time-

dependent release of radionuclides from spent high burn-up UO2 fuel is required for safety analyses. 

The first release fraction consists of radionuclides in gaseous form, and those showing a high solubility 

in groundwater.  

LWRs use conventional oxide fuels with initial enrichments of up to 5 wt.% 235U for reaching average 

burn-up of  60 GWd/tHM. During the use of UO2 in a reactor, a significantly higher burn-up takes 

place at the rim of the fuel pellets. The physico-chemical properties of the fuel are further complicated 

by additions of gadolinium oxide and/or chromium oxide, which is used for criticality control or to 

adjust the UO2 grain sizes for minimizing fission gas release (FGR). Moreover, the fission products of 

uranium cause expansion in the UO2 crystal structure leading to disturbances of the fuel matrix. The 

chemical stability of the fission products oxides in the UO2 matrix, can be classified into different 

groups: (i) the rare earth elements and Y, Zr, Ba and Sr, whose oxides form either solid solutions with 

UO2 or single phase precipitates; (ii) Mo, Cs and Rb, which are either oxidized or not, depending on 
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the O/U ratio; and (iii) elements like Ru, with unstable oxides which form metallic precipitates within 

the UO2.  

The CP is organized in six workpackages (WP): WP1, “Samples and tools” deals with the selection, 

characterization and preparation of the materials to be studied and the set-up of experimental and 

organisational tools. In this sense, one of the essential requirements of the project is that typical and 

sufficiently well characterized spent nuclear fuel is being used for the experiments and modelling 

studies. WP2 covers the “Gas release and rim and grain boundary diffusion experiments” and WP3 

addresses “Dissolution based release studies”. This includes determining the chemical form of released 

radionuclides, fission gases, 135Cs, 129I, 14C, 79Se, 99Tc and 126Sn. WP4 “Modelling” deals with 

modelling of release/retention processes of fission products in the spent fuel structure. Special 

attention is attributed to fission product migration along the grain boundaries, the effects of fractures in 

the pellets and of holes/fractures in the cladding. The modelling work within FIRST-Nuclides will help 

to clarify which geometric scales dominate the fast/instant release. 

WP5 “Knowledge, reporting and training” is responsible for the knowledge management generated 

within the project, the state-of-the-art report, the general reporting, keeping the documentation up-to-

date and organizing training measures. The management of the Collaborative Project is included in 

WP6. 

The project is implemented by a Consortium with ten beneficiaries (Karlsruher Institut fuer 

Technologie (KIT) Germany, Amphos 21 Consulting S.L. (AMPHOS21) Spain, Joint Research Centre 

– Institute for Transuranium Elements (JRC-ITU) European Commission, Forschungszentrum Juelich 

GmbH (JÜLICH) Germany, Paul Scherer Institut (PSI) Switzerland, Studiecentrum voor Kernenergie 

(SCK•CEN) Belgium, Centre National de la recherche scientifique (CNRS) France, Fundacio Centre 

Technologic (CTM) Spain, Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA-

EK) Hungary, and Studsvik Nuclear AB (STUDSVIK) Sweden). The Coordination Team consists of 

KIT (Coordinator) and AMPHOS21 (Coordination Secretariat) which are responsible for project 

management, knowledge management, documentation, dissemination and training. Their 

responsibilities include further the coordination of the project work and activities, communication 

between the Project Consortium and the European Commission, monitoring the use of resources and 

transferring financial resources, communication between different project beneficiaries and bodies, 

documentation of the project outcome and its dissemination and communication to interested parties.  

Several organisations from France (Commissariat à l'énergie atomique et aux énergies alternatives, 

CEA), USA (Los Alamos Natonal Laboratory, SANDIA National Laboratories), UK (Nuclear 
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Decommissioning Authority (NDA, Center for Nuclear Engineering of the Imperial College London), 

National Nuclear Laboratory (NNL) and a consortium coordinated by the University Cambridge), 

Finland (Posiva Oy, Teollisuuden Voima (TVO)), Spain (CIEMAT) and Germany (Gesellschaft für 

Anlagen- und Reaktorsicherheit (GRS) mbH) contribute to the project without any funding as 

Associated Groups (AG). These groups have particular interest in the exchange of information. Finally, 

a group of six implementation and regulatory oriented organizations (SKB (Sweden), NAGRA 

(Switzerland), ONDRAF/NIRAS (Belgium), ANDRA (France), BfS (Germany), ENRESA (Spain) 

participate as an “End-User Group (EUG)”. This group ensures that end-user interests (waste 

management organisations and one regulator) are reflected in the project work reviewing the project 

work and the scientific-technical outcome. 
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1
st

 ANNUAL WORKSHOP 

The 1st Annual Project Workshop of the FIRST-Nuclides project was held in Budapest (Hungary) 9th – 

11th October 2012. The workshop was hosted by MTA-EK. There were 44 attendees at the workshop, 

representing beneficiaries, associated groups, the End-User Group and project external organizations. 

The workshop was organized in three days of oral presentations of results obtained within the project 

and a topical session on characteristics and modelling of spent nuclear fuel. 

 

Objectives 

The Workshop combines different activities and meetings with the following objectives: 

• Informing about the scientific progress. Plenary sessions are used for giving overviews by the 

workpackage leaders and communicating detailed results and planned activities by the 

beneficiaries. 

• Informing about the administrative status. 

• Informing/agreeing upon forthcoming reporting. 

• Discussing various topics of interest for the consortium. 

• Agreeing upon the forthcoming work program. 

Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. 

 

RTD sessions 

The workshop included plenary sessions where the results from the different workpackages were 

presented. Next to an overview of the achievements within the respective WP, scientific highlights 

were presented. The following presentations were given within the project. 

WP1 session 

• V. Metz. Overview of Activities within WP1 “Samples and Tools” 

• V. Metz, A. Loida, E. González-Robles, E. Bohnert, B. Kienzler. Characterization of 

irradiated PWR UOX fuel (50.4 GWd/tHM burn-up) used for leaching experiments. 

Contribution of KIT-INE to WP1 “Samples and Tools” 

• D.H. Wegen, D. Papaioannou, R. Nasyrow, R. Gretter. Non-destructive analysis of a PWR 

fuel segment with a burn-up of 50.4 GWd/tHM 
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• H. Curtius. HTR spent fuel - selected material for FIRST-Nuclides- 

• A. Froideval Zumbiehl, E. Curti, I. Günther-Leopold. WP1: Selection and description of 

spent fuel samples selected for PSI studies in frame of the FIRST Nuclides project 

• K. Govers, M. Verwerft, W. Van Renterghem, K. Lemmens, T. Mennecart, C. Cachoir, 

L. Adriaensen, A. Dobney, M. Gysemans. Characterisation of SCK·CEN fuel samples used 

for leach tests in FIRST-Nuclides  

• J. Vandenborre. Radiolytic corrosion of grain boundaries onto the UO2 TRISO particle 

surface: WP1 - Solid characterization and irradiation cell development 

• R. Sureda, J. de Pablo, I. Casas, F. Clarens, D. Serrano-Purroy, P. Carbol, J.P. Glatz, 

D. Papaioannou, V. Rondinella. SNF selected for the FIRST Nuclides WP1 

• Z. Hózer, E. Slonszki. Characterisation of spent VVER-440 fuel (WP1) 

• O. Roth. Sample Selection and Characterization at Studsvik 

 

WP2 session 

• D.H. Wegen. WP2: Fission Gas Release and Rim and Grain Boundary Diffusion 

• D.H. Wegen, D. Papaioannou, W. de Weerd. Sampling and Measurement of Fission Gas 

from Spent Nuclear Fuel 

• E. Bohnert, E. González-Robles, M. Herm, B. Kienzler, M. Lagos, V. Metz. Determination 

of Gaseous Fission and Activation Products Released from 50.4 GWd/t PWR Fuel – 

Contribution of KIT-INE to WP2 

• O. Roth. Preparations and experimental start-up at Studsvik WP2 

• P. Carbol, I. Marchetti. Oxygen and Water Diffusion into 42 GWd/tHM UO2 Fuel under 

Reducing Conditions 

• H. Curtius. HTR Spent Fuel -Microstructure and Radionuclide Inventory- 

• J. Vandenborre, A. Traboulsi, G. Blain, J. Barbet, M. Fattahi. Radiolytic Corrosion of Grain 

Boundaries onto the UO2 TRISO Particle Surface: WP2 – First in situ RAMAN tests under 

He2+ irradiation 

 

WP3 session 

• K. Lemmens. Introduction : overview of activities within WP3 

• Z. Hózer, E. Slonszki. Evaluation of activity concentation data measured at Paks NPP 
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• D. Serrano-Purroy, L. Aldave de las Heras, J. P. Glatz, R. Sureda, F. Clarens, J. de Pablo, 

I. Casas. Overview of activities. Experimental set-up 

• O. Roth, J. Low, A. Puranen, D. Cui, C. Askeljung. Preparations and experimental start-up 

at Studsvik WP3 

• E. González-Robles, E. Bohnert, A. Loida, N. Müller, V. Metz and B. Kienzler. 

Characterization of 50.4 GWd/t PWR fuel and set-up of dissolution experiments 

• Th. Mennecart, K. Lemmens, K. Govers, L. Adriaensen, C. Cachoir, A. Dobney, 

M. Gysemans, W. Van Renterghem, M. Verwerft. Concept of leach tests for the 

experimental determination of IRF radionuclides from Belgian high-burnup spent nuclear 

fuel in “FIRST-Nuclides” 

• I. Günther-Leopold, E. Curti, A. Froideval Zumbiehl. XRF/XAS feasibility study for 

radionuclides determination in spent fuel samples 

 

WP4 session 

• J. de Pablo. WP4 – Overview of activities 

• M. Pękala, A. Idiart, L. Duro, O. Riba. Modelling of SF Saturation with Water (Approach, 

Preliminary Results and Potential Implications) 

• B. Kienzler, C. Bube, V. Metz, E. González-Robles Corrales. Modelling of boundary and 

initial conditions for upscaling  migration / retention processes of fission products in the 

spent nuclear fuel structure 

• I. Casas, A. Espriu, D. Serrano-Purroy, A. Martínez-Esparza, J. de Pablo. IRF modelling 

from high burn-up spent fuel leaching batch and dynamic leaching experiments 

 

WP5 session 

• A. Valls. Status and overview of WP5 

• E. González-Robles, V. Metz, B. Kienzler, O. Riba, A. Valls, L. Duro. State of the art 

(WP5: Deliverable 5.1) 
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Poster presentations 

The following posters were presented during the 1st Annual Workshop: 

• B. Kienzler, V. Metz, L. Duro, A. Valls, V. Montoya. Generic Poster of FIRST-Nuclides 

project 

• E. González-Robles, B. Kienzler, V. Metz, A. Valls, O. Riba, L. Duro. State of the art of 

the Fast/Instant Release Fraction 

 

Topical session 

The Topical Sessions aim at covering the key areas along with the project. In these proceedings, 

topical sessions held in the kick-off meeting are also included. Those topical sessions focused on 

characterization and modelling of the spent nuclear fuel behaviour under repository conditions.  

Presentations within this topic were the following: 

• O. Beneš. Thermodynamics of Fission Products in spent nuclear fuel 

• C. Gebhardt, W. Goll. Characteristics of Spent Nuclear Fuel 

• D. Serrano-Purroy, J. P. Glatz. Impact of the irradiation history of nuclear fuels on the 

corrosion behaviour in a disposal environment 

• P. Van Uffelen. The potential of TRANSURANUS for source term calculations of spent 

fuel 

 

Additional presentations 

Additional presentations were given on a topic of general interest, especially the context of the present 

project within the EURATOM FP7 program on geologic disposal. These presentations were given by 

the associated group. Additional presentations given during the kick-off meeting are also are also 

included. 

• D. Hambley. Long term behaviour of spent AGR fuel in repository 

• A. Meleshyn, J. Wolf, U. Noseck, G. Bracke. Source term modelling for spent fuel 

elements in performance assessment 

• D. Reed. Applicability of Past Spent Fuel Research in the US to a Salt-Based HLW 

Repository 
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• D. C. Sassani. Brief Overview of Used Fuel Degradation & Radionuclide Mobilization 

Activities within the Used Fuel Disposition Campaign 

 

Structure of the proceedings 

The proceedings are divided into the following sections: 

• WP activity overviews 

• Individual Scientific and Technical Contributions, containing reviewed scientific and 

technical manuscripts 

• Posters presented in the 1st Annual Workshop 

• Contribution of external experts presenting issues of interest for the project within the 

Topical Sessions 

• Additional presentations given by members of the associated group 

All the scientific-technical contributions submitted were reviewed by the EUG members (End-User-

Group).
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OVERVIEW WP1: SAMPLES AND TOOLS 

Volker Metz 

Karlsruher Institut fuer Technologie (KIT), DE 

Introduction 

The first workpackage deals with selection, characterization and preparation of appropriate spent 

nuclear fuels samples and set-up of tools for handling and transportation of the highly radioactive 

material. The overall objectives of WP1 are: 

 Provision documentation of available experimental and theoretical data on high burn-up spent 

nuclear fuel (HBU-SNF) material; 

 selection of those HBU-SNF samples for subsequent experimental investigations, where key 

parameters regarding fuel history and irradiation characteristics are sufficiently known and 

publication of these parameters is permitted; 

 preparation of selected HBU-SNF samples for subsequent structural and chemical 

characterisation as well as experimental investigations within WP2 and WP3. 

Six months after the start of the project, available experimental and theoretical data were documented 

in Deliverable 1.1 (Metz et al., 2012a). In these Proceedings of the 1st Annual Workshop, new results 

of the characterisation of selected samples and activities related to the sample preparations are 

reported.  

Since the activities within WP1 are a prerequisite for further experimental investigations within CP 

FIRST-Nuclides, all experimentally working Beneficiaries contribute to this workpackage.  

 

Achievements 

KIT provided a spent nuclear fuel rod segment with an average discharge burnup of 50.4 GWd/tHM, 

which was transported to JRC-ITU for characterisation, gas sampling, cutting and sampling of fuel 

pellets. Characteristics of the fuel rod segment are described in Metz et al. (2012b). They compared 

values of the average burnup and the initial 235U enrichment of the HBU-SNF samples selected by KIT 

and the other Beneficiaries and to respective values of fuel assemblies irradiated BWR and PWR fuels 

reported by the NEA Nuclear Science Committee (2006). The 50.4 GWd/tHM fuel rod segment was 

inspected visually for defects and a -scan of the segment was recorded by JRC-ITU (Wegen et al., 
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2012a). Furthermore, the JRC-ITU team determined the oxide thickness along the segment’s cladding, 

punctured the segment for gas sampling and prepared pellet-sized samples by dry cutting (Wegen et al., 

2012b; Wegen et al., 2012c). The oxide thickness data are in good agreement with results of the -

scanning (Wegen et al., 2012b). Gas analyses were conducted within workpackage 2 of FIRST-

Nuclides, and results are given by González-Robles et al. (2012). Some of the pellet-sized samples are 

provided by JRC-ITU to KIT for dissolution-based experiments, other pellet-sized samples of the fuel 

rod segment are used for further post irradiation examinations by JRC-ITU (Wegen et al., 2012b). 

Curtius and Bosbach (2012) report manufacturing data and irradiation characteristics as well as 

radionuclide inventories of five UO2 TRISO fuel pebbles irradiated in the Petten High Flux Reactor. A 

burnup of about 107 GWd/tHM was calculated for the end of the irradiation. Coated particles were 

isolated from the pebbles and transported to JÜLICH for scanning electron microscope examinations 

and dissolution-based experiments. For dissolution-based experiments and spectroscopic studies, PSI 

selected two HBU UO2 fuel rods and one HBU mixed oxide fuel rod having burn-ups in the range of 

57.5 to 63 GWd/tHM. For each of the selected fuel rods one suitable fuel segment was selected and a 

segment cutting plan was compiled. Manufacturing and operational data of the fuel rods, cutting plans, 

and the set-up of their leach experiments are described by Günther-Leopold et al. (2012). SCK•CEN 

studies a fuel rod with an average discharge burnup of 51 GWd/tHM. Govers et al. (2012) presents the 

characteristics of the fuel rod that will be used for dissolution-based experiments. Details on the fuel 

manufacturing, irradiation history, calculated isotopic inventory and the temporal inventory evolution 

are given. Based on the -scanning of the fuel rod, a segment cutting plan was developed (Govers et al., 

2012).  CNRS selected non-irradiated UO2 TRISO particles for studies on the corrosion at UO2 grain 

boundaries under cyclotron radiation. Vandenborre et al. (2012) reports on scanning electron 

microscope examinations and geometric properties of the studied TRISO particles. Set-up of analytical 

tools and first in situ tests were performed within workpackage 2 of FIRST-Nuclides, and details are 

given by Vandenborre et al. (2012). MTA-EK compiles characterisitic data on damaged VVER-440 

fuel stored in the spent fuel storage pool of the Paks-2 power plant since an incident in April 2003. 

Hózer and Slonszki (2012) present design and operational characteristics data of these spent VVER-

440 fuel rods. Details are given about the post-incident history, calculations of power history and 

burnup dependent parameters (e.g., linear power, fuel temperature, gap width). A summary on the 

radionuclide inventories of 30 damaged fuel assemblies and the radionuclide inventory of a leaking 

fuel assembly is given by Hózer and Slonszki (2012). STUDSVIK selected six HBU UO2 fuel rods 

having burn-ups in the range of 50.2 to 70.2 GWd/tHM for dissolution-based experiments. Roth and 

Puranen (2012) summarize the process of selecting the HBU-SNF samples and preparations made for 
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the start of the experiments.  Characteristics of the fuel rods are reported in Metz et al. (2012a). Based 

on -scanning of the fuel rods, segment cutting plans were developed; an exemplary -scan and cutting 

plan is shown by Roth and Puranen (2012).  
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OVERVIEW WP2: GAS RELEASE + RIM AND GRAIN BOUNDARY 
DIFFUSION 

Detlef Wegen  

Joint Research Centre – Institute for Transuranium Elements (JRC-ITU), European Comission 

Introduction 

Workpackage 2 (WP2) consists of two main components. In the first component “Experimental 

determination of fission gas release” the focus is on the quantification of fission gases and fission gas 

release in high burn-up (HBU) UO2 spent nuclear fuels (SNF). Fission gas sampled in the plenum of a 

fuel rod will be analysed as well as the grain boundary inventory and the cross sectional distribution of 

fission gases and volatile fission products. 

The second component “Rim and grain boundary diffusion” deals with investigations on oxygen 

diffusion in spent UO2-fuel. The examination diffusion effects will result in the quantification of water 

penetration into the grain structures and subsequent corrosion/diffusion phenomena. Furthermore, 

investigations on irradiated and unirradiated fuel kernels separated from high temperature reactor 

(HTR) fuel are planned which are complementary to those on light water reactor (LWR) fuel.  

The following five institutions are collaborating in WP2. 

The Joint Research Centre – Institute for Transuranium Elements (JRC-ITU) is the leading 

organization for WP2. In the first project year the fission gas release from a spent fuel rod owned by 

KIT will be measured. The determination of the inventory of fission gas and fission products in grain 

boundaries are foreseen for the second and third project year. 

The investigation of diffusion effects will start in the first project year with the characterisation and 

preparation of spent fuel samples, which will be used for corrosion experiments in H2
18O water at 

room temperature during the second project year. In the last year the 18O/16O depth profiles will be 

determined to quantify the oxygen diffusion in SNF. 

The Karlsruher Institut für Technologie (KIT) will in the first project year analyse fission and 

activation products in the gas phase from a punctured fuel rod segment. The development, testing and 

implementation of analytical methods for fission and activation products will be carried out in project 

year one and two. Leaching experiments in which gas and solution analyses are foreseen will be 

started in the first year and last until project month 33. 
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Studsvik Nuclear AB (STUDSVIK) will in the frame of WP2, investigate the radial fission gas and 

volatile fission product distribution (Xe, I, and Cs) by Laser-Ablation Mass Spectroscopy (LA-MS) on 

HBU PWR and BWR SNF.  

Forschungszentrum Jülich GmbH (JÜLICH) is working on spent high temperature reactor fuel (HTR). 

The radionuclide inventory in the fuel kernel and in the coatings as well as the microstructure and the 

elemental distribution will be analysed before leaching in the first half of the project. Investigations of 

the microstructure and of the elemental distribution of the fuel kernel and of the coatings will be 

performed before (first half of the project) and after leaching (second half of the project). Within the 

first half of the project the radionuclide inventory in the fuel kernel and in the coatings will be 

determined and compared to calculated values as well. After cracking of the tight coatings the fission 

gas release fraction will be measured in the first 18 months. Then static leaching experiments with the 

separated fuel kernels and coatings will start in year two in order to determine the fast instant 

radionuclide release fraction. 

Unirradiated tristructural-isotropic (TRISO) fuel particles are investigated by the Centre National de la 

Recherche Scientifique (CNRS) at the ARRONAX cyclotron under He2+-beam irradiation in the dose 

rate range of 0 - 100 Gy/min. The corrosion of UO2 TRISO particles is investigated in view of grain 

boundary effects and secondary phase formation and the influence of hydrogen. The experiments will 

be started in the beginning of the second project year with studies on the role of grain boundaries 

followed by investigations under hydrogen and under varying dose rates. 

 

Achievements 

After six month experimental work programme the outcome is coined by preparatory work, testing of 

new experimental set-ups and characterisation of materials and samples. 

JRC-ITU has done fission gas sampling and analysis from a PWR fuel rod owned by KIT (Wegen et 

al., 2012). The total amount of gas, the gas pressure in the rod and the free volume was determined. 

The gas samples were shared with KIT for further analyses.  

The gas composition was determined by KIT using a quadrupole mass spectrometer with batch inlet 

system (Bonhert et al., 2012). A method to determine 14C in gas and aqueous solutions by liquid 

scintillation counting is under development. 

STUDSVIK has planned laser ablation studies on a BWR and on a PWR UOX fuel (Roth, 2012). 
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JRC-ITU has started the preparation of the oxygen/water diffusion study (Carbol and Marchetti, 2012). 

The spent fuel was selected and the transfer of ownership is on-going. ITU's shielded SIMS has been 

prepared for measurements on spent fuel fragments (holder, procedures etc.). 18O-labelled water 

(>98 at.% H2
18O) was purchased. This was difficult because the amount is limited and most of the 

produced 18O is needed for the production of 18F, which is widely used in PET (positron emission 

tomography).  

JÜLICH has started to analyse the microstructure and elemental distribution before leaching as well as 

the radionuclide inventory in the fuel kernel and in the coatings (Curtius et al., 2012). The surface of 

the fuel kernel shows large grains and the metallic precipitates appear as hexagonal platelets. The 

elements Cs, O, U, Mo, Xe, Zr, and Tc were identified whereas higher amounts of the volatile 

elements Cs and Xe were detected in the surrounding buffer. Furthermore, the elements Am, Pu, Cm, 

U, Eu, Ce, Sr, Tc, and Pr were found quantitatively within the kernel while Cs behaved differently. 

About 95% of the activity was found in the coatings. 

CNRS has in WP2 set-up the analytical tools. First in situ tests were carried out. UO2 solid was 

immersed in ultra pure water and irradiated at the ARRONAX facility with a He2+ beam. During 

irradiation first Raman spectra were measured in situ (Vandenborre et al., 2012).  
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OVERVIEW WP3: DISSOLUTION BASED RELEASE 

Karel Lemmens  

Studiecentrum voor Kernenergie (SCK-CEN), BE 

The overall objective of WP3 is the quantification of the fast release of radionuclides by means of 

leach tests with spent nuclear fuel, and – to the extent possible – the determination of their chemical 

speciation. Such leach tests are performed by INE, PSI, Studsvik, SCK•CEN, ITU and CTM. The 

experiments are done with PWR fuels having a burnup in the range of 45 to 70 MWd/kgHM, with BWR 

fuels of 50-60 MWd/kgHM, and a MOX fuel of 63 MWd/kgHM (average burnups). 

The radionuclides that are susceptible to fast release are situated in various compartments of the fuels, 

i.e. in the gap between the fuel and the cladding, in the large fissures, in the grain boundaries, and in 

the cladding. Hence, the release to be expected in the leach tests depends on the physical preparation 

of the fuel samples from the fuel rods. The most complete information can be obtained by exposing 

different fuel compartments to the leachant. The programme therefore foresees tests with cladded fuel 

segments (segments cut from the fuel rods, a few mm to 2.5 cm long, exposed to the leachant on the 

top and bottom surface, but radially covered by the cladding), with fuel fragments (not covered by the 

cladding), and with fuel powder (maximum grain boundary exposure). For some fuels, fragments and 

powder from the centre and the periphery of the fuel are tested separately.  In other leach tests, the 

cladding is separated from the fuel fragments, and the cladding with the adhering fuel residues is 

leached together with the fragments. In still other experiments, the cladding with the adhering fuel 

residues is leached separately (without the fuel fragments). Lastly, the cladding can be leached after 

removal of the fuel residues, to determine the specific release from the cladding.  

The radionuclide release measured in the leach tests depends to some extent on the leach test 

conditions, i.e. the composition of the leachant and the atmosphere.  To reduce the related effects and 

to ease the intercomparison of the results, most tests are done in a harmonized solution of  

19 mM NaCl + 1 mM NaHCO3. The atmosphere under which the tests are performed is mostly 

oxidizing, but the oxidation is limited by closure of the leach vessels.  One laboratory uses a reducing 

atmosphere (argon with hydrogen gas). During the leach test, the composition of the leachant is 

verified at different time intervals. The last sampling is foreseen 12 months after the start of the 

experiments, but in some cases (particularly with fuel powder) the sampling will be stopped after  

40-60 days.  
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The exact experimental setup of the leach tests is different for the various laboratories. Some 

laboratories replace the solution completely at the sampling intervals, other laboratories take only 

small samples. The equipment and procedures are not standardized. 

The radiochemical analyses always include the Cs and I isotopes, which are well known for their fast 

release and which show a similar behaviour as the fission gasses. Much attention is given also to 79Se 

and 14C, i.e. isotopes for which the release and speciation is poorly understood.  Special efforts are 

done to lower the detection limit for 79Se. One laboratory plans specific surface analyses to determine 

the Se distribution on a µm-scale and to determine the oxidation state of the Se in the fuel. Another 

laboratory foresees specific analytical treatments to distinguish organic from anorganic 14C. Other 

isotopes are measured as well, e.g. 90Sr and U isotopes, which allow to estimate the fuel oxidation 

before and during the leach tests. One laboratory also intends to measure the released gasses (Kr, Xe, 

H2, O2). 

As a complement to the leach tests performed on fuel samples under controlled laboratory conditions, 

the leaching behaviour of damaged and leaking VVER fuels is studied. These fuel rods have been 

stored since 2003 (damaged fuel) and 2009 (leaking fuel) in pools with a pH 4 and 7, containing  

15-21 g/kg boric acid.  

The leach tests are currently in the preparation phase. Radionuclide release measurements are therefore 

not yet available. The papers hereafter describe the experimental setup and analyses planned by the 

various laboratories contributing to WP3. 

 



 

 

OVERVIEW WP4: MODELLING 

Joan de Pablo  

Fundació Centre Technologic (CTM), ES 

Objectives 

The objectives of WP4 cover initial speciation of fission products in LWR fuel, and multi-scale 

modelling of the migration / retention processes of fission products in the HBU spent fuel, in the 

cladding, and the estimation of the fission product total release through the spent fuel rod.  

On the other hand, a semi-empirical model will be developed to predict fission product release to water 

from gap, grain boundaries and grains. 

 

Introduction 

In this project, the following parts of the fuel will be taken into account (see Table 1)  

Table 1: Radionuclides and Part of the Fuel considered in FIRST-Nuclides 

GAP Fission gases, volatiles (129I, 137Cs, 135Cs, 36Cl, 79Se, 126Sn*). Also 14C (non-

volatile but partially segregated) 

GRAIN 

BOUNDARY 

Fission gases, volatiles (129I, 137Cs,135Cs, 36Cl, 79Se, 126Sn*), segregated metals 

(99Tc, 107Pd) 

RIM Fission gases, volatiles (129I, 137Cs,135Cs, 36Cl, 79Se, 126Sn*), Sr 

* more relevant for MOX 

Besides, the dissolution of the matrix will also be considered to differentiate radionuclide release from 

the grains.  

In two recent papers, Serrano-Purroy et al. (2012) and Roudil et al. (2007), IRF were determined at 

two different times, 10 and 60 days respectively. In both cases, the release of selected radionuclides 

followed after more than one year but a lower rate. Therefore, IRF should be probably correlated to the 

instant that water contacts the gap and grain boundaries and not with time, thus the time needed for 

pellet saturation is one of the important parameters. In this context, it is important to assess the water 

saturation time. 
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Modeling  

1) Radionuclide Characteristics  in the Fuel 

KIT performed for a rod segment the calculation of the burn-up and decay history by using web-

KORIGEN. 

Temperature history and the calculation of the rim zone burn-up and thickness as well as the rim 

porosity.  

2) Water saturation of the fuel 

AMPHOS 21 assessed the saturation time of SNF under conditions representative of a deep 

underground repository and laboratory. 

3) Modeling of radionuclide release to water 

UPC-CTM is developing a semi-empirical model is based on the experimental fitting by using three 

different first-order kinetic equations corresponding to different parts of the fuel: gap, cracks, external 

or internal grain boundaries,  rim structure, and finally grains (matrix). 
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OVERVIEW WP5: KNOWLEDGE, REPORTING AND TRAINING 

Alba Valls  

Amphos 21 Consulting S.L. (AMPHOS21), ES 

Work package 5 (WP5) of the FIRST-Nuclides project is focused on knowledge management and 

knowledge dissemination, reporting and training. The objectives of this WP are (i) to provide access to 

all scientific-technical results for all interested parties, (ii) to elaborate a state of the art report and (iii) 

to organize, within the project, training and education for the next generation of spent nuclear fuel 

specialists. 

Several dissemination activities are foreseen along the project. They are mainly centered on making 

accessible all the information related with the project to the interest parties such as the beneficiaries of 

the project itself or the scientific community. The dissemination is done via various channels: 

newsletters, presentations, posters, project webpage, annual workshops, proceedings, etc. The webpage 

of the project consists on a public site where all the information of the organization and objectives of 

the project are available as well as the public deliverables produced along the project life. The 

information/reports are periodically updated and all the uploaded material will be available for 5 years 

after the end of the project. In addition, an intranet is created for the members of the FIRST-Nuclides 

with the aim of facilitating the communication between the members of the project consortium. 

The first version of the State of the art report is already published (Kienzler et al., 2012) and it is 

available at the project website (http://www.firstnuclides.eu/). This report is divided in two parts, the 

first one presents basic information of spent fuel, such as the characterization of nuclear fuel, 

irradiation and temperature induced processes in UO2 during its use in reactors, and disposal concepts 

for spent nuclear fuel in different countries. In the second part of the report, the state of the art on fast 

release fraction is documented by a summary of results obtained from more than 100 published 

experiments using different samples, experimental techniques, and duration of the experiments. The 

State of the Art report will be regularly updated with respect to the advances achieved within the 

project. 

Three different training measures are planned during the FIRST-Nuclides project:  

(i) organizing invited lectures within the annual workshops, given by external experts 

regarding issues of interest in the frame of FIRST-Nuclides. In the 1st Annual Workshop, 
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staff from AREVA was invited to give a presentation on ‘Characteristics of Spent Nuclear 

Fuel’; 

(ii) organizing training on the job through mobility measures between partners. Training 

mobility measures are offered to the project beneficiaries and to organizations from the EU 

and Switzerland. These measures are not open to third countries even in the Associated 

Group.  

(iii) organizing training courses. KIT-INE will provide for a training course in summer 2013, on 

hot cells work to improve the handling and waste management techniques and to boost the 

safety awareness of scientific. Attendants will receive practical training as well as script of 

the course. 

During the second year of the project, it is foreseen to edit the second newsletter and to organize the 

second annual workshop. An update of the State of the Art report will be delivered.  
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Abstract 

This work focuses on the Instant Release Fraction modeling of several leaching experiments 

performed with a High Burn-up Spent Fuel of 60 MWd/kgU. Experimental results from powder 

samples from different parts of the fuel and cladded fuel (CS) segment samples were evaluated. Data 

were obtained by using different experimental devices, both batch (static) and continuous flow system 

(dynamic). 

Uranium, technetium and cesium release have been studied by using a kinetic model which consists of 

three functions for first order kinetics representing different parts of the fuel. A good fit has been 

obtained in all the cases.  

 

Introduction 

Instant Release Fraction (IRF) refers to the fraction of the inventory of relevant radionuclides (RN) 

that may be rapidly released from the fuel after a failure of canister. From a theoretical point of view, 

soluble radionuclides outside of the UO2-matrix will be released immediately rsp. intaneously when 

water is in contact with the failed  canister.  Different assessments of the RN percentage corresponding 

to this IRF have been proposed from different authors. A good discussion of this can be found in 

Johnson et al. (2004) where for high burn-up (HBU) fuels the estimation of best and pessimistic values 

differed by more than 50%. It is pointed out in the same report that the contribution from gap and grain 

boundary to the IRF is also unclear. 
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These inconsistencies promoted important experimental programs on IRF from High Burn-up Fuel. It 

started with the NF-PRO project (Clarens et al., 2007) and is followed with the present FIRST-

Nuclides project. 

To obtain information about the location of the different RN’s, powders from the center and the 

periphery of the fuel and cladded segments were leached in different media (González-Robles, 2011).  

A recent paper (Serrano-Purroy et al., 2012) discussed the contribution from external and internal grain 

boundaries to identify the RN release, taking into account leaching experiments. In the same sense, 

Roudil et al. (2007) discussed the contribution of the gap and grain boundaries to the IRF. 

In these experiments, it is necessary to define the duration of the leaching to determine the IRF. 

Nowadays this time is selected somewhat arbitrarily, in the works commented above, Serrano-Purroy 

et al. used 10 days to determine the IRF while Roudil et al. established 60 days. In both works, the 

total release of selected radionuclides after more than one year of leaching time showed a lower rate. It 

is questioned if this lower release rate is related to the possibility of the water to contact grain 

boundaries or to ability of water to dissolve the matrix.  

In this work, data of theleaching experiments performed with a HBU fuel (González-Robles, 2011; 

Serrano-Purroy et al., 2012) will be used for applying a semi-empirical model to determine the 

contribution of the different parts of the fuel to the IRF. 

 

1. Conceptual model 

The conceptual model for SNF dissolution is developing as a sum of different fuel parts. The 

dissolution of each different phase is considered as first order kinetics. 

݉ோேሺݐሻ ൌ 	∑ ݉ோே,௜∞ ൉ ሺ1 െ ݁ି௞೔൉௧ሻே
௜ୀଵ  eq. 1 

The main parameters are mRN(t) which means the total measured cumulative moles dissolved of the 

correspondent fission product at a time t, mRN,i∞ which means the total moles present for the specified 

dissolving phase of the fission product and ki is the  kinetic constant for the dissolution of that phase.  

The model has a number of implicit assumptions and limitations. We assume the homogeneity of the 

different samples; in the case of powders this means that every single particle has the same size, 
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composition and radionuclide distribution. In the case of cladded fuel samples, it is assumed that the 

fuel surface is regular.  

The model considers also matrix dissolution, since its dissolution rate will be the rate as the different 

radionuclides located inside the matrix will release.  

 

2. Samples 

The characteristics and preparation of the spent fuel samples that we have used in the model exercise 

are given in detail elsewhere (González-Robles, 2011). A summary of these characteristics is given in 

Tables 1 and 2. Two different powders were used, one from the periphery (called “out”) and another 

from the center of the pellet (called “core”). CS refers to cladded segment. 

Table 1: Characteristics of the Spent Fuel 

Fuel  60BU 

Reactor type PWR 
BU (MWd/kgU) 60 

Length cycle (days) 352 
235U enrichment (weight %) 3.95 
Number of irradiation cycles 5 

End of irradiation March 2001 
Fission Gas Release (%) 15 

 

Table 2: Physical characterization of powder and segmented samples 

Sample 
denomination 

Size 

60BU-CORE 68 ± 15 μm 
60BU-OUT 82 ± 8 μm 
60BU-CS Length: 12.7mm 

Diameter: 10.7mm 
Weight: 8.9647 g 

 

 

Table 3 shows the leaching experiments that have been modeled in the present work. 
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Table 3: Powder and segmented samples used in the modeling exercise. In all cases the modeled radionuclides are 
the same: U, Cs and Tc 

SAMPLE EXPERIMENT 
Powder (OUT) Static 

 Dynamic 
Powder (CORE) Static 

 Dynamic 
Pellet Static 

 

3. Results and discussion 

Two radionuclides, Cesium and Technetium (in addition to Uranium), have been chosen for this 

preliminary modeling. Cesium due to its known high release and Technetium because there are some 

doubts if this element has a significant contribution to IRF. Technetium is present in fuel as insoluble 

alloy (Johnson et al., 2004). Although its release is very small, it is segregated significantly to grain 

boundaries. Besides, Uranium is also modeled for determining the release associated to the matrix 

dissolution.  

In Figure 1, cumulative moles of the three radionuclides for powder out-sample by using a dynamic 

system (see Serrano-Purroy et al., 2011) are shown as a function of time. At the beginning, the three 

elements show a rather similar behavior, with a fast initial release. After this initial period, the rate of 

release decreases for the three radionuclides, although Uranium and Technetium slow down more 

significantly than Cesium. 

 

Figure 1: U, Cs and Tc cumulative moles vs. time for powder out-samples in a dynamic system 
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In all the experiments and for the three elements it was possible to fit the experimental data to an 

expression with three different kinetic constants corresponding to different parts of the fuel: 

݉ோேሺݐሻ ൌ 	݉ோே,ଵ∞ ൉ ሺ1 െ ݁ି௞భ൉௧ሻ ൅ ݉ோே,ଶ∞ ൉ ሺ1 െ ݁ି௞మ൉௧ሻ ൅ ݉ோே,ଷ∞ ൉ ሺ1 െ ݁ି௞య൉௧ሻ eq. 2 

The expression eq. 2 is the proposed model to predict the release of any radionuclide. It is necessary to 

determine the following six parameters: mRN,1∞, mRN,2∞, mRN,3∞, k1, k2 and k3. Though, since the total 

mass of a certain radionuclide is known from the inventory, then mRN,3∞ is deduced from mRN,1∞ and 

mRN,2∞. 

First of all, the Uranium results were modeled in order to find k3, since this constant should correspond 

to the matrix dissolution kinetic constant. Then, Cesium and Technetium were modeled taking the 

same value for k3, assuming that it would correspond to the fraction of each radionuclide released from 

the matrix assuming congruent dissolution. 

In Figures 2, 3, and 4 experimental data obtained for the three radionuclides from static tests with 

powder OUT and CORE samples are presented together with the mRN(t) values obtained from the 

fitting of equation eq. 2. As it is observed a fairly good fitting is always obtained. 

Figure 5 shows Cesium data obtained from the static experiment with the cladded segment. In this 

Figure the three contributions of equation eq. 2 are presented together with the total mRN(t) values. 

A summary of the fitting parameters obtained for the whole set of experiments studied is summarized 

in Table 4. 

 

Figure 2: Uranium fitting from static experiments 
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Figure 3: Cesium fitting from static experiments 

 

 

Figure 4: Technetium fitting from static experiments 
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Figure 5: Cesium fitting from static experiments using a cladded fuel segment 
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Exp. Sample Nuclide 
m1 

(%) 
m2 

(%) 
m3 

(%) 
k1 

(d-1) 
k2 

(d-1) 
k3 

(d-1) 

Static Pellet 
U 0.007 0.005 99.99 0.63 1.45·10-3 3.00E-09 
Cs 3.91 2.33 93.76 9.64 0.88 1.23E-05 
Tc 0.02 0.004 99.98 5.08 0.25 1.66E-06 

 

As seen in Table 4, a different behavior is observed for the cladded fuel segment sample: m1 might be 

the contribution from the gap and cracks, while m2 could be due to grain boundary dissolution. On the 

other hand, it is observed that k3 is much higher for Cesium than for Uranium, indicating that in this 

experiment both elements are not congruently dissolved at the end of the experimental time. 

Uranium and Technetium release are similar in all the samples, but k3 values differ in several 

experiments. This fact would indicate that dissolution is not congruent and it could indicate the 

Technetium segregation to grain boundaries.  

 

Conclusions and Future work 

This work is a preliminary attempt to model IRF experimental data taking into account radionuclide 

location: gap, grain boundary, internal grain boundary and matrix, as well as the high burn-up 

structure. 

The model is conceptually based on the contribution of different phases dissolving simultaneously, and 

allows to present hypothesis of the source terms of each radionuclide. 

Several sets of experiments have been successfully modeled, which is giving confidence that the 

overall release of the radionuclides can be fitted adequately.  

This kind of modeling is planned to be applied in the future to the experimental data generated in the 

First-Nuclides project.  
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Abstract 

Spent UO2 fuel samples produced for High Temperature Reactors (HTR) are used by Jülich within the 

project FIRST-Nuclides. After grinding and polishing of the miniature fuel element (the so-called 

coated particle) the obtained polished specimen was investigated with ESEM (Environmental scanning 

electron microscope) in order to gain information of the microstructure. Big pores and metallic islands 

are visible. An elemental mapping was performed and the elements Cs, Xe, Mo, Zr, U, O, Si and C 

were identified clearly. As expected the volatile elements Cs and Xe are mainly detected in the 

surrounding porous carbon layer, the so-called buffer. 

ESEM investigation was performed with the fuel kernel itself. Big grains but small pores are visible at 

the periphery. The metallic islands form hexagonal platelets and contain the elements Zr, Tc, Mo.  

The activities of nuclides of Cs, Eu, Ce, Ru, Sb, Rh, Pr and Am in a coated particle were determined 

by gamma spectrometric measurement. The measured values agree with the calculated values. A 

selective cracking process and a separation step were developed to distinguish clearly between the 

elemental distribution within the fuel kernel and the coatings. The fuel kernel and the coatings were 

leached respectively dissolved and the solutions obtained were analysed. The elements Am, Pu, Cm, 

U, Eu, Ce, Sr, Tc, and Pr are located quantitatively within the kernel. The activity distribution of the 

element Cs is extremely different. About 95% of the activity of Cs was detected in the coatings. Due to 

the low oxygen potential of the fuel-kernel and considering carbon oxidation during irradiation ternary 

Cs compounds are not stable and the only stable phase for Cs is gaseous. In this chemical form Cs was 

released from the fuel-kernel to the coatings. 

 

Introduction 

Five fuel pebbles from the German production AVR GLE-4/2 were used at the High Flux Reactor in 

Petten and an experiment was performed which was called HFR-EU1bis. The irradiation started on  
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9 September 2004. After 249 full effective power days the experiment was terminated on 18 October 

2005. For the pebble HFR-EU1bis/2 a burn-up of 10.2 % FIMA was determined. More experimental 

details are given in the following section “Selection of material”. Coated Particles drilled out from the 

pebble HFR-EU1bis/2 will be used in WP2. 

WP2 focus on four topics: 

1. The microstructure (grain boundaries, morphology, metallic islands, pore size and gas bubbles) 

before and after leaching. 

2. Elemental mapping will go along with these investigations. 

3. The determination of the radionuclide inventory by wet chemistry and other analytic tools. The 

experimental data obtained will be compared to the calculated radionuclide inventory. 

4. The characterisation of the fission gas fraction and of the fast/instant release fraction of volatile 

radionuclides after contact with groundwater represents the main working goals.  

Preliminary results of the four topics, microstructure, elemental mapping, radionuclide inventory and 

radionuclide distribution between coatings and fuel kernel are presented at the first annual workshop. 

 

1. Selection of material 

At the High Flux Reactor in Petten the experiment HFR-EU1bis was performed (Fütterer et al., 2006) 

using five fuel pebbles from the German production AVR GLE-4/2.  

These fuel pebbles had a diameter of 60 mm and mainly consist of graphite. Each fuel pebble 

contained about 9560 so called TRISO coated particles with 502-micron diameter UO2 kernels, having 

16.76 235U wt% enrichment; coating thickness were approximately 92, 40, 35 and 40 micron for 

porous carbon buffer, inner dense pyrocarbon layer (IPyC), silicon carbide (SiC) and outer dense 

pyrocarbon layer (oPyC). A fuel pebble represents a fuel element whereas a coated particle can be 

regarded as a “miniature fuel element” of about 1 mm in diameter. In Figure 1 a fuel element (pebble) 

and a TRISO coated particle are illustrated.  
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3. Radionuclide inventory 

3.2 Gamma measurement of an irradiated coated particle 

The radionuclide inventory was calculated with the OCTOPUS code (Fütterer et al., 2008) after a cool-

down period of 1749 days after end of irradiation on 18th October 2005. In Table 1 the main 

radioisotopes and their activities for a coated particle (CP) are summarized. In order to compare these 

calculated values to measured values a gamma spectrometric measurement was performed. The 

irradiated TRISO coated particle was placed in a polyethylene tube, closed and the measurement was 

started. Two different detectors were attached to the gamma spectrometer; a HPGe detector type PGC 

2018, Bias: 2500 V positive and a low energy germanium (LEGe) detector. The measure time was 

86,400 sec. The sample has a distance to the HPGe detector of 60 cm and 50 cm to the LEGe detector. 

For determination of the radionuclide activities the software Gamma-W version 2.44 was used. The 

uncertainties of the values obtained are in the range between 10 to 13%. 

The measured activities agree with the calculated values quite well (Table 2). 

 

3.3 Determination of radionuclide activities by wet chemistry and different analytic tools 

After the gamma spectrometric measurement of the CP (coated particle) a crack process was started 

using a modified micrometer screw and a self-constructed sample device. It was possible to separate 

the coatings from the fuel kernel selectively. The coatings were placed in a 20 ml polyethylene vial. 

Then 10 ml Thorex reagenz (mixture of 13 M HNO3, 0.05 M HF and 0.1 M Al(NO3)3 x 9 H2O) was 

added and leaching was performed for 7 days. The isolated fuel kernel was placed in a 20 ml 

polyethylene vial and dissolved completely in 10 ml Thorex reagenz. 

Both sample solutions were used for further analytical steps in oder to compare the calculated values to 

the measured activities and to gain informations about the elemental distribution between coatings and 

fuel kernel. 

First the activity of tritium in the chemical form as HTO was determined. From each sample solution 

100 µl were diluted with 9.9 ml water and a subboil process (70°C) was performed. The condensate 

was collected and 1 ml was used for the β-measurement, performed with a Liquid Scintillation Counter 

(LSC, TRICARB 2200 A, Packard). Results are summarized in Table 1 and indicate that only small 

activities (about 3.2%) of tritium as HTO are only present in the kernel. The main activity of tritium is 

expected in the gas fraction. Another β-measurement using 0.1 ml from each sample solution was 
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performed and the activity of 241Pu was determined. 241Pu is quantitatively present in the kernel 

(Table 1) and was not detected in the coatings (detection limit: 0.1 Bq/sample). 

Then 1 ml from each sample solution was filled in a polyethylene vial and a γ-measurement was 

performed (HPGe detector type PGC 2018, Bias:2500 V positiv, counting time: 86,400 s, software: 

Gamma-W Version: 2.44: using 152Eu as standard solution with the same geometry, distance 15 cm). 

The uncertanties of the measured activities are in the range between 5% (high values) to 20% (low 

values). The radiosotopes 144Pr, 144Cer, 154Eu and 155Eu were identified and detected quantitatively in 

the kernel, but only about 5% of the activity of Cs was detected. Within the coatings the activity of Cs 

was determined to be about 95%. Under the conditions of irradiation a very low oxygen potential was 

present (taken carbon oxidation into account as well). Under this condition Cs does not form stable 

ternary compounds and the only stable phase is the gaseous one. A high release of Cs from the fuel 

kernel to the coatings took place (Barrachin et al., 2011). 

Besides Cs the radioisotope 90Sr strongly contributes to the activity of the sample. The activity of 90Sr 

was determined after the following selective separation steps; 1 ml of each sample solution was diluted 

with 0.67 ml of a 1 M HNO3 solution. Then 1 ml of this solution was used to quantify the 90Sr activity. 

A colum (6 ml in volume) was filled with a suspension of 1 g resin (Sr-Resin, Eichrom-Company) in 5 

ml of a 2 M HNO3 solution. The colum was washed two times with 5 ml of a 2 M HNO3 solution and 

then 5 ml of a 8 M HNO3 solution was added. Afterwards the sample solution was added to the 

column. The sample vial was rinsed with 1 ml of a 8 M HNO3 solution and this solution was added to 

the colum as well. Then a washing step with 10 ml of a 8 M HNO3solution was performed. The 

washing solution was collected. After the washing steps 90Sr was eluated by using  

10 ml of a 0.05 M HNO3 solution. Immediatly 1 ml of the eluat was used for the β-measurement. The 

main activity ( 95 ± 2%) of Sr was detected in the kernel. 

Then the activity of technetium was determined. First the washing solution of the Sr partition process 

was evaporated. The obtained residue was dissolved in a 2 M HNO3 solution (about 2 ml) and then 

used as sample soltuion for the Tc stripping. A colum (6 ml in volume) was filled with a suspension of 

1 g Tc-Resin (TEVA-Resin, Eichrom-Company) in 5 ml of a 2 M HNO3 solution. The colum was 

washed two times with 5 ml of a 2 M HNO3 solution. Then the sample solution was added. Washing 

steps were performed with 10 ml of a 2 M HNO3 solution. After the washing process Tc was eluated 

with 10 ml of a 8 M HNO3 solution. The eluate was evaporated and the residue was dissolved in 1 ml 

of a 2 M HNO3 solution and the activity of Tc was determined by LSC. Tc is quantitatively present in 

the kernel. 
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An alpha-spectrometer (Octete, company Ortec, PIPS-detector (planar implanted passivated silicon)) 

was used to analyze the activities of the radionuclides U, Pu, Am, Np and Cm. 0.1 ml from both 

samples solutions were vaporized directly on metal disks and the measurement was performed for 

250,000 sec. The results indicate that with these radionuclides are completely present in the kernel 

(Table 2). The activity for Np was below the detection limit. 

 

Table 2: Radionuclide activities for a coated particle (CP) (uranium mass of 0.60476 mg) calculated with the OCTOPUS 
code (date: august 2010), measured activities ** for the coatings and for the fuel kernel from the sample solutions (date 
august 2012) and measured activities for the intact CP* by γ-measurement (date august 2012). 

Nuclide Bq/CP Bq/kernel ** Bq/coatings** Bq/CP* 
3H  2.37E+04 6.84E+02 n.d. n.d. 

90Sr 4.11E+06 3.18E+06 0.17E+06  
90Y 4.11E+06 3.18E+06 0.17E+06  
99Tc 9.86E+02 1.31E+03 0.97E+01  

106Ru 2.34E+06 1.33E+05 7.28E+04 3.10E+05 
125Sb 3.95E+05 1.52E+04 3.54E+02 8.10E+04 
134Cs 1.51E+06 2.58E+04 0.80E+06 0.84E+06 
137Cs 6.47E+06 4.00E+05 6.36E+06 6.56E+06 
144Pr 2.06E+06 0.35E+06 1.46E+03 0.37E+06 

144Cer 2.05E+06 0.36E+06 1.18E+03 0.31E+06 
154Eu 2.23E+05 1.14E+05 2.85E+02 1.20E+05 
155Eu 1.22E+05 4.67E+04 1.52E+02 0.49E+05 
234U 1.42E+02 1.82E+02 n.d.  
235U 2.95E+00 n.d. n.d.  
236U 2.59E+01 3.33E+01 n.d.  

237Np 1.48E+01 n.d. n.d.  
238Pu 5.75E+04 7.03E+04 2.45E+02  
239Pu 1.37E+04 1.09E+04 1.41E+01  
240Pu 1.69E+04 1.35E+04 1.55E+01  
241Pu 4.39E+06 2.47E+06 n.d.  

241Am 3.91E+04 3.11E+04 1.05E+02 2.15E+04 
244Cm 1.20E+04 0.90E+04 1.33E+01  

n.d. : not detected  
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Conclusions and Future work 

Within the project First Nuclides UO2TRISO coated particles are used as spent fuel samples. ESEM 

investigations were performed to obtain information of the microstructure and of the elemental 

distribution. Big pores, large grains and metallic precipitates are visible in a polished specimen. The 

elements Cs, O, U, Mo, Xe, Zr and Si were identified whereas higher amounts of the volatile elements 

Cs and Xe were detected in the surrounding buffer. The periphery of an isolated fuel kernel revealed 

big grains and small pores. The metallic islands appear as hexagonal platelets and the elements Mo, Zr 

and Tc were identified clearly. 

The activities of the elements Cs, Eu, Ce, Ru, Sb, Rh, Pr and Am of a coated particle were determined 

by γ-spectroscopy and agree with the calculated values.  

A selective cracking, separation and dissolution/leaching step was performed to distinguish clearly 

between the elements in the fuel kernel and in the coatings. Then the radionuclides were identified by 

different analytical tools and their activities were determined.  

The elements Am, Pu, Cm, U, Eu, Ce, Sr, Tc, and Pr are located quantitatively within the kernel 

according to the results. The element Cs is different. About 95% of the activity was found in the 

coatings. During irradiation a very low oxygen potential developed and under this condition Cs is only 

stable in atomic form in the gas phase. In this chemical form Cs the drastic release of Cs from the fuel 

kernel can be explained.  

In future work the fission gas released during the crack process will be analysed. Further on in the 

beginning of 2013 isolated fuel kernels will be leached under oxic and anoxic/reducing conditions.  
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Abstract 

A combined X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) study of some 

relevant instant release fraction radionuclides - such as Se, Cs, and I - is proposed to be conducted on 

high burn-up UO2 spent nuclear fuel in order to gain insight into the redox state and the microscopic 

distribution patterns of these radionuclides. This report mainly focuses on the description of the 

experimental methodology.  

 

Introduction 

In the safety case for high-level radioactive waste repositories, aqueous corrosion of the waste plays a 

central role, since it determines the source term of radionuclide release to the environment. The direct 

disposal of irradiated nuclear fuel is an option adopted in many countries, implying that radionuclide 

release studies from spent UO2 and MOX fuel are critical for the safety case. One of the major issues 

to be resolved is the reliable determination of the so-called “Instant Release Fraction” (IRF) i.e. the 

cumulative inventory fraction of segregated easily soluble nuclides (129I, 135Cs, 36Cl, 79Se, 14C, 99Tc) 

which is released within weeks/months on contact with aqueous solutions. This initial phase is 

followed by slow radionuclide release following the dissolution of the UO2/PuO2 lattice (“matrix 

dissolution”). 

In the present study, we propose to gain insight into the chemical speciation and microscopic 

distribution patterns of some relevant IRF radionuclides such as Se, Cs and I, present in high burn-up 

UO2 spent nuclear fuel. An analytical approach based on the combined use of synchrotron-based 

techniques such as X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) will thus be 

conducted on such radioactive nuclear material. The spectroscopic characterization (both on the 

microscopic and on the macroscopic scale) of selected IRF nuclides within the spent fuel matrix may 
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greatly help in understanding the mechanisms of fast initial release in aqueous solutions. We will 

particularly focus on Se, since this is the least known among the IRF nuclides. For instance, in recent 

experiments it was not possible to detect Se by ICP-MS in the leaching solution after interaction 

between spent nuclear fuel and aqueous solution, implying a leached inventory fraction of less than 

0.22% (Johnson et al., 2012). Such results would be understandable if Se is present as (insoluble) 

reduced species (Se0 or Se–II) in the pristine spent fuel and would not undergo oxidation to soluble 

oxidized species (SeIV or SeVI) during the leaching process. Therefore, one of the main goals of the 

proposed X-ray spectroscopic study will be the determination of the oxidation state of Se in the 

selected spent fuel samples before and after aqueous leaching.  

 

Materials  

Two classes of materials are foreseen to be investigated in a first step of the experimental study: 

 (i) a high burn-up (~75 GWd/t, 9 cycles) UO2 spent nuclear fuel irradiated in the Leibstadt 

nuclear plant (KKL), 

 (ii) several non-irradiated UO2 reference materials containing simultaneously Se, Cs and I in 

amounts covering the concentration ranges expected in spent fuel.  

The above mentioned fuel sample was selected for the feasibility study since the samples chosen for 

the FIRST-Nuclides leach experiments are not yet prepared in the hot cells of PSI (the work is 

scheduled for 2013) whereas a subsample of this rod is easily accessible due to earlier investigations in 

the frame of other post irradiation examination programs. Although the burn-up of this fuel is slightly 

higher than the samples envisaged for the leach experiments (57 – 64 GWd/t), a successful 

investigation of the 9 cycles-UO2 fuel would give important insight into the Se redox state and would 

prove the depicted analytical concept.  

It is foreseen to prepare the high burn-up UO2 spent nuclear fuel from KKL by using the peeling test 

method described in Degueldre et al. (2011). This method consists of polishing a section of the fuel 

segment by successively using silicon carbide and sand abrasive papers. The freed micro-particles of 

fuel are then removed from the surface of the fuel section and collected by pressing the fuel section on 

a piece of adhesive Kapton tape (see Figure 1). The peeling preparation method has the advantage to 

allow reducing the spent fuel sample to a size which limits the sample activity below 100 LA1 allowed 

at the microXAS beamline. A Kapton tape subsample with a total activity below the 100 LA limit will 

                                                            
1 LA stands for the Swiss licensing limit, specified in Annex 3 Column 10 of the “Strahlenschutzgesetz, March, 22nd, 1991” 
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Experimental approach 

The spectroscopic characterization (both on the microscopic and on the macroscopic scale) of selected 

IRF nuclides within the spent fuel matrix is proposed to be investigated by using synchrotron-based 

techniques such as (micro-)X-ray fluorescence spectroscopy (micro-XRF) and micro-X-ray absorption 

spectroscopy (micro-XAS). Particular attention has been paid to choose suitable beamlines in terms of 

technical capabilities and allowance for active samples. The INE-beamline (ANKA synchrotron 

facility, KIT, Eggenstein-Leopoldshafen, Germany) and the microXAS beamline (SLS, Villigen PSI, 

Switzerland) were found to meet the necessary requirements for carrying out measurements on 

radioactive samples. However, they differ in the technical specifications:  

 (i) The range of photon energies delivered at the INE-beamline would allow collecting XANES 

spectra at the Se K-edge, as well as at the Cs L1-edge and the I L1- and I L2-edges; in contrast, the 

microXAS beamline has a more restricted energy range allowing measurements to be made only at the 

Se K-edge.  

 (ii) The micro-focusing capabilities of the microXAS beamline are excellent (with a size of the 

beam at the sample surface in the order of ~ 11 m2) making it the beamline of choice to collect 

spectroscopic information with a spatial resolution in the low micrometer level.  

 (iii) The primary photon intensity at the microXAS beamline is about a factor 100 larger than at 

the ANKA beamline.  

 (iv) ANKA has much higher activity limits, which would in principle allow the preparation of 

larger (and thus more representative) UO2 spent fuel samples with a continuous surface.  

Thanks to a past successful study performed at the microXAS beamline (SLS) on the characterization 

of plutonium-uranium mixed oxide by coupling micro-X-ray diffraction and absorption investigations 

(Degueldre et al., 2011), we believe that a similar synchrotron-based analytical approach could be 

conducted on a high burn-up spent UO2 fuel sample (see Table 1). However, measuring IRF nuclides 

in a heavy spent fuel matrix is more challenging than only recording U and Pu absorption spectra. 

Specifically, the low concentrations in the 100 - 4000 ppm range and lower beam energies involved 

(E<13 keV) will limit the number of excitable atoms.  

These potential difficulties were the main reason for the decision taken to use non-irradiated UO2 

reference materials for a feasibility study. They will be used in preliminary measurements for verifying 

the detection limits for I, Cs and Se measurements in real spent fuel samples. Afterwards, micro- and 

bulk-XANES spectra are foreseen to be recorded at the Se K-edge on the high burn-up UO2 fuel 
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sample. Such absorption spectra are expected to allow determining the redox state distribution of Se in 

the spent fuel sample with a spatial resolution close to few micrometers. This information is important 

to understand where, in the spent fuel texture, selenium is present as immobile Se(-II), Se(0) or mobile 

Se(IV), Se(VI) species contributing to the IRF. Knowledge of the redox state is expected to yield basic 

information on the mobility of these nuclides. For instance, selenium is known to be immobile in the 

reduced states Se(-II) and Se(0), whereas it becomes easily soluble upon oxidation to Se(IV), Se(VI) 

(Scheinost and Charlet, 2008). A proposal for beamtime request at the microXAS beamline will be 

submitted by Sept. 15, 2012.  

Moreover, a beamtime proposal has been submitted to ANKA in the frame of the call n°20 (beamtime 

campaign: Oct. 2012 - March 2013) in order to obtain access to the INE beamline. The proposed 

experiment aims at investigating, on a microscopic (micrometer) scale, by means of XAS/XRF: (i) the 

distribution of IRF nuclides (Cs, I, Se) within the spent fuel texture, specifically whether I, Cs and Se 

are enriched in the porous rim of high burn-up spent fuel grains; (ii) the redox state and atomic 

coordination environment of Se through bulk via if possible) micro-EXAFS (if possible); (iii) the 

redox state of Se and I via micro-XANES measurements which will yield important information on the 

mobility of these nuclides. Unfortunately, beamtime could not be allocated in spite of the excellent 

scientific judgment of the proposal. Nevertheless, thanks to the common scientific interest, INE has 

agreed to provide – if possible within the very restricted beamtime currently available – “in-house” 

access to the INE beamline. This beamtime would be devoted to the aforementioned feasibility 

XAS/XRF study with UO2 reference materials aiming at determining the detection limits of Se, Cs, I in 

UO2. Depending on the time schedule of the INE beamline, two options have been offered to us: (i) the 

allocation of two days of beamtime within the “in-house” beamtime pool or (ii) occasional test 

measurements depending on the time schedule of the beamline (see Table 1).  
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Table 1: Synchrotron-based methodology proposed to be conducted at the Swiss Light Source (SLS, Villigen PSI, 
Switzerland) and/or at the ANKA facility (Eggenstein-Leopoldshafen, Germany) in order to investigate relevant IRF 
nuclides in high burn-up UO2 spent fuel and in non-irradiated UO2 reference samples containing Se mixed with Cs 
and I 

 S a m p l e s   f o r e s e e n   to   be   i n v e s t i g a t e d: 

T e c h n i q u e s 

high burn-up UO2 spent fuel 
(from KKL nuclear plant) 

UO2 reference samples 
containing Se  

mixed with Cs and Ia 
 
 

(micro-)XRF 

Accessible elements and their corresponding emission lines: 
Se-K1,2 

I-L1,2 

Cs-L1, Cs-L1 

Se-K1,2 

 
Se-K1,2 

I-L1,2 

Cs-L1, Cs-L1 
 
 

(micro-)XANES 

A b s o r p t i o n   e d g e s:  
Se-K,  
Cs-L1 

I-L1, I-L2 

Se-K Se-K 
Cs-L1 

I-L1, I-L2 
Beamline (facility) INE (ANKA) microXAS (SLS) INE (ANKA) 

Sample UO2 spent fuel UO2 spent fuel UO2- reference samples 
(feasibility study) 

Status of the 
beamtime request 

submitted, 
but not accepted 
(on waiting list) 

to be submitted 
(by Sept. 15) 

“in-house” INE beamtime, or, 
test measurements 

Note:  a The selenium, caesium and iodine concentrations will be approx. 10, 100, and 1000 ppm. 

 

Conclusions 

An analytical approach based on the combined use of the (micro-)XRF and the (micro-)XAS 

synchrotron methods is proposed to be applied to a high burn-up UO2 spent fuel in order to gain 

insights into the redox state and the microscopic distribution patterns of some relevant IRF 

radionuclides such as Se, Cs and I, present in the nuclear material.  
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Abstract 

The study of the instant release fraction requires a better knowledge of the fission gas release and the 

radionuclide release during leaching experiments. In the present communication we explain the 

methodology to measure the fission gas release from a fuel rod puncturing test and, the instant release 

fraction from leaching experiments with samples from the same fuel rod segment. Additionally, a 

complete description of the materials, conditions and analytical methods that will be used during the 

leaching experiment is given. Results of the gas analyses from the puncturing test are presented. 

 

1. Introduction 

The disposal in deep bedrock repositories is considered as the preferred option for the management of 

spent nuclear fuel, SNF, in many countries (Johnson and Shoesmith, 1988; Shoesmith, 2000; Bruno 

and Ewing, 2007). The aim is to permanently and safely dispose of the radioactive material so that it is 

isolated from the biosphere for an appropriate length of time. A multi-barrier system is interposed 

between the SNF and the environment considering the SNF itself as the first technical barrier. In safety 

assessments for disposal of spent nuclear fuel (SNF) in deep underground repository, failure of 

canisters and loss of the integrity of fuel rods is considered in the long term. Some of the radionuclides 

within the SNF material will be directly exposed to water contact after the barrier failure. Assessing 

the performance of SNF in a potential future geological disposal system requires the understanding and 

quantification of the radionuclide release.  

The release of the radionuclides into water will be constituted by two main processes (Johnsson et al., 

2005; Poinssot et al., 2005): i) short term release of the so-called instant release fraction (IRF); ii) long 

term release dominated by the dissolution of the UO2 grains, which is referred as matrix contribution. 
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The IRF is due to the segregation of a part of the radionuclide inventory to the gap interface between 

the cladding and the pellet, the fractures as well as to grain boundaries. The radionuclides that will be 

segregated are: fission gases (Kr and Xe), volatiles elements (129I, 137Cs, 135Cs, 36Cl and 79Se) and 

segregated metals (99Tc and 126Sn) (Johnson et al., 2004). The degree of segregation of the various 

radionuclides is highly dependent on in-reactor fuel operating parameters such as linear power rating, 

fuel temperature, burn-up, ramping processes, and interim storage time. In the case of the fission gases, 

the gas release occurs by diffusion to grain boundaries, grain growth accompanied by grain boundary 

sweeping, gas bubble interlinkage and intersection of gas bubbles by cracks in the fuel (Johnson and 

Shoesmith, 1988).The fission gas release is more correlated to the linear heat rating, which is also 

correlated to fuel temperature, than to the burn-up of the SNF (Kamikura, 1992, Johnson et al., 2004). 

The conditions during irradiation ensure that linear heat ratings are kept low and the fission gas release 

is minimised. The radionuclides located in the gap interface will be released after some weeks, 

whereas a complete release of the radionuclides segregated in the grain boundaries will take several 

months or even years. 

During the last decade three European projects, SFS (Poinssot et al., 2005), NF-PRO (Grambow et al., 

2008) and MICADO (Grambow et al., 2010) were carried out, in which, the IRF concept was revised 

and redefined as the radionuclide inventory located within microstructures with low confinement 

properties: fuel plenum, gap zone, fracture surfaces, the rim zone with high burn-ups structures and 

grain boundaries (Grambow et al., 2010). 

The present work aims to analyse gases (in particular fission gases) released into the plenum of the 

fuel rod, and the development of an experimental procedure to measure the radionuclides that 

constitute the IRF during the performance of leaching experiments. 

 

2. Materials, methods and results 

2.1 Investigated 50.4 GWd/tHM  PWR fuel rod segment 

For the experimental studies, KIT-INE provided a HBU-SNF rod segment which had been irradiated 

during four cycles in the PWR Gösgen (KKG), Switzerland, and discharged in May 1989. During 

reactor operation an average burn-up of 50.4 GWd/tHM was achieved. Characteristic data of the studied 

segment N0204 of the KKG-BS fuel rod SBS1108 are given by Metz et al. (2012) and Wegen et al. 

(2012). 
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2.2 Gas analysis  

Prior to the start of the leaching experiments, the fuel rod segment was carried to ITU for two 

purposes: i) characterization of the fuel rod segment (by means of non-destructive analyses in the first 

year of the FIRST-Nuclides project) and a puncturing to estimate the amount of fission gases present 

in the fuel rod segment; ii) the preparation of pellet-sized SNF samples. 

2.2.1 Experimental procedure 

Once the puncturing of the fuel rod segment was performed at ITU, the pressure was measured and 

gases were collected in stainless steel single-ended miniature sampling cylinders. The SS-4CS-TW-50 

Swagelok gas sampling cylinders were characterised by a volume of 50 ml, a length of 159 mm, an 

outer diameter for tube fitting of 9.5 mm and an inner diameter for tube socket weld connection of  

6.4 mm (Figure 1). The volume of the tubes is known and the total amount of gas could be calculated. 

The cylinders were carried back to KIT-INE, where the gases were analysed by means of a quadrupole 

gas mass spectrometer (gas MS). The gas MS (GAM400, In Process Instruments, Bremen, Germany) 

was equipped with a Faraday and SEV detector and a batch inlet system (Figure 1). The batch-type 

gas inlet system was optimised for low gas sample consumption. Within the gas dosage and inlet 

system, the total gas pressure was controlled at four successive positions. It applied three different 

expansion-volumes to charge relatively low gas contents in the desired pressure range. Ten scans of 

each gas sample were measured, using the SEV-detector, and the mean value was taken. Calibration of 

the gas MS analysis was performed in the same pressure range as the respective range for analyses of 

the sample aliquots. 

 

 

Figure 1: a) Image of GAM400 quadrupole gas mass spectrometer b) Image of a stainless steel single-ended 
miniature sampling cylinder used to collect gas samples 

 

b

)

a
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2.2.2 Results 

Table 1 presents the average values of gases measured in the samples taken from the puncturing test of 

the 50.4 GWd/tHM fuel rod segment. O2 and N2 contents in the gas composition (0.31 and 1.3 vol.%, 

respectively) are related to air contamination during the sampling of the cylinders. The gas released 

from the plenum of the punctured fuel rod segment contains a measurable content of CO2. In the past, 

similar CO2 contents were observed in various fuel rod puncturing tests performed by some of the 

FIRST-Nuclides project partners, i.e. ITU, PSI, SCK-CEN and Studsvik. The measured contents of Kr 

and Xe will be compared to their calculated total inventory in the 50.4 GWd/tHM fuel rod segment, in 

order to determine the percentage of the fission gas released into the plenum. 

 

Table 1: Concentration of gases and absolute gas volumes sampled during the puncturing test of the 50.4 GWd/tHM 
fuel rod segment 

Gas 
Concentration 

(vol.%) 
Volume 

(cm3) 
Ar 0.28 0.40 

CO2 0.13 0.18 
N2 1.3 1.87 
O2 0.31 0.44 
Kr 1.5 2.1 
Xe 18 26 
He 78 111 

 

2.2.3 Leaching experiments 

Three leaching experiments with samples of the 50.4 GWd/tHM fuel rod segment are foreseen to be 

conducted under anoxic conditions. The samples will be: one cladded segment (as a pellet) and two 

decladded SNF fragments. The experiments will be carried out in Ti-lined VA autoclaves (total 

volume 250 ml; Figure 2), with two valves in the lid to allow sampling of gases and of solutions 

during the experiment.  A 10 mM NaCl + 1 mM NaHCO3 solution is chosen as leachant, and the 

anoxic conditions will be achieved by application of a H2 + Ar reducing atmosphere within the 

autoclaves ( 37 bar Ar +3 bar H2). 
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Figure 3: Images of the gas sampling system that will be using during the leaching experiments. a) Image of the 
interior of the shielded box-line of KIT-INE, showing the Titanium valves and stainless steel tubings, which connect 
the autoclave to the out of the hot cell. b) Image of out part of the hot cell, showing the connection between the 
autoclave (coming from the previous figure) and the sample cylinder used to collect the gases. 

 

2.2.5 Aqueous sampling procedure 

The aqueous solution will be analysed to determine the specific activity of 134Cs, 135Cs, 137Cs, 90Sr, 
241Pu, 129I, 79Se, 14C, 36Cl, 238Pu, 239Pu, 240Pu, 238U, 99Tc, 237Np. Following analysis methods will be 

applied: 

 γ-spectrometry for concentration measurements of 134Cs, 137Cs. The separation of these 

radionuclides from the original solution is described in Grambow et al. (1996). Afterwards the 

analysis is performed by means of Ge-detectors (EGC-15-185-R and GX3018, Canberra 

Industries Inc, Meriden, USA). 

 Liquid scintillation counting (LSC) using a Packard Tri-Carb 3110TR Low activity scintillation 

analyser (Perkin Elmer INC, Waltham, USA) to quantify: 90Sr, 241Pu, 14C. Solution aliquots 

will be homogenised with a LSC-Cocktail (Ultima Gold XR, Packard) before measurement. 

 α-spectrometry will be used to determine the amount of 238Pu, 239Pu, 240Pu using a analysis 

chamber with a S100 field channel analysator (238Pu, 239/240Pu) and passivated implanted planar 

silicon (PIPS) detectors (Canberra 74/01, Canberra Industries Inc, Meriden, USA) which 

combine high resolution and low backgrounds in a rugged alpha detector with active areas up 

to 1200 mm2. It integrates into one package a stainless steel vacuum chamber for low 

backgrounds and ease of cleaning, a vacuum gauge, detector bias supply, preamp/amplifier, 

pulser, discriminator, counter, and digital display. A stainless steel shelf and sample holder are 

b) a) 
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included for reproducible detector/sample spacing, which is user selectable from 1 to 49 mm, in 

4 mm increments 

 Inductively coupled plasma mass spectrometer (ELAN 6100, Perkin Elmer Inc, Waltham, 

USA) to measure the concentrations of 79Se, 238U, 99Tc, 237Np. 

 

3. Summary and future work 

KIT-INE provided a 50.4 GWd/tHM fuel rod segment in the ownership of KIT-INE, where all data and 

findings can be published without restrictions. This HBU-SNF was transported to ITU for 

characterisation, gas sampling, cutting and sampling of fuel pellets. Gas samples and fuel pellets were 

returned to KIT for further investigations. Results of the measured fission gas contents will be 

compared to their theoretical total inventory in order to estimate the percentage of fission gas that was 

released into the plenum of the fuel rod segment. The analytical method for the gas measurements will 

also be applied to fission gases obtained during dissolution based experiments.  

KIT-INE will perform three static leaching experiments with a pellet-sized cladded segment and two 

decladded SNF fragments. These experiments will be conducted under reducing conditions in 

autoclaves performing regular sampling of gases and solutions. The methodology that will be followed 

during the performance of the leaching experiment is explained in the present communication. Within 

the following months the leaching experiments will be started. 
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Abstract 

In the framework of the FIRST-Nuclides program, SCK•CEN will conduct leaching experiments on a 

PWR UOX fuel, taken from the Belgian Tihange 1 reactor, with a rod average burnup of  

50 MWd/kgHM in order to determine the rapid release of some of the most critical radionuclides. 

Considering the influence of the irradiation parameters on the actual location of fission products at the 

beginning of the leaching test, the interpretation of the experimental results highly relies on a good 

characterization of the fuel samples. This article will deal with the characterization of the fuel rod and 

samples that will be used for the leach tests performed at SCK•CEN.  

 

Introduction 

As one of the partners of FIRST-Nuclides with a hot-cell infrastructure and the required analytical 

laboratories, SCK•CEN will perform leach tests on spent fuel samples with a relatively high burn-up. 

For this purpose, a fuel rod was selected from the spent fuel stock available at SCK•CEN for which the 

characteristics are known and can be made public.  

In the past, several fuel rods irradiated under high duty conditions in Tihange 1 PWR reactor, have 

been extracted from their assembly to perform post-irradiation experiments at SCK•CEN laboratories. 

These fuel rods and relevant results of the previous post-irradiation examination (PIE) campaign are 

available for further research. These fuel rods are therefore good candidates for correlating leach tests 

measurements to FGR results.  

The present article provides the characteristics of the fuel rod that will be used for the leach tests at 

SCK•CEN (Mennecart, et al., 2012). It is a PWR UOX fuel from the Belgian Tihange 1 reactor 

irradiated about 12 years ago during cycles 20 and 21 up to an average burnup of about 50 MWd/kgHM.  
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We show the scheme according to which the samples will be cut for further characterization and for 

the leach tests. Detailed irradiation data are not available yet and will be reported at a later stage. In the 

meantime pellet average isotopic composition has been estimated based on the calculated burnup. 

 

Fuel rod characteristics 

Fuel rod history 

The Tihange 1 NPP, located in Belgium, is a PWR reactor loaded with 15×15 fuel assemblies usually 

operated at an elevated linear power. Two fuel rods located at symmetrical positions (D05 and E12) in 

the assembly have been extracted from assembly FT1X57 for non-destructive and destructive analyses 

in the SCK•CEN laboratories (Sannen and Pathoens, 2003). Fuel rod D05 has been selected for use in 

FIRST-Nuclides and will be further characterized in this paper. 

Details about the power history at rod and sample level will be reconstructed by the operator during 

the first phase of the FIRST-Nuclides project, based on reactor power history and power distribution 

mapping of the core. At present, generic data are available: the final rod-average burnup, estimated as 

50.0 MWd/kgHM for rod D05, was achieved in two cycles of 18 months each. The intermediate burnup 

was about 28.1 MWd/kgHM. 

Rod fabrication data 

The geometry of assembly FT1X57 consists of a 15×15 array of fuel rods with 21 unfuelled locations 

(guide tubes) for potential insertion of control rods or instrumentation. The cladding material is M5. 

Nominal data about the fuel rod design can be found in Table 1. Batch data relative to rod dimensions 

and fuel composition are reported in Table 2.  
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Table 1: Nominal (design) data – rod D05, fuel assembly FT1X57 

Assembly type AFA 2G 
Assembly geometry 15 × 15 
# of fuel rods per assembly 204 
Rod pitch     (mm) 14.3 
Fuel  
Type UO2 
Enrichment (nominal)  (% U235/Utot) 4.25 
Density (nominal)   (% TD) 96 
Average grain size    (µm) 10 
Cladding  
Type  M5 recrystallized 
Composition 

 Nb    (wt.%) 

 Fe     (wt.%) 

 O     (wt.%) 

 Zr     (wt.%) 

Nominal M5 
 0.8 – 1.2 
  0.015 – 0.06 
  0.09  – 0.12 

balance 

External diameter    (mm) 10.720 
Thickness     (mm) 0.618 
Internal diameter    (mm) 9.484 

 

Cutting scheme definition 

Fuel rods D05 and E12 were cut, after non-destructive tests, into four segments of about 1 m length 

each. The samples for the leach tests will be taken from the second segment (from the bottom) of rod 

D05, internally referred to as FT1X57-D05/R4. The burnup profile between the end of the first span up 

to the end of the fifth span is indeed relatively constant, as shown by the γ-activity measurement (see 

Figure 1), except close to grid locations. Activity peaks are observed at regular intervals in the central 

zone, indicating volatile product migration to colder zones at inter-pellet locations. A large 

contribution to the signal originates from Cs isotopes. There is, however, no indication of major 

redistribution of volatile fission products along the fuel rod, which would be characterized by a slightly 

depleted signal at the centre and higher activity in the bottom and top parts.  

The samples to be used for the leach tests will consist of two pellets. The samples are cut from mid-

pellet to mid-pellet in order to keep a representative inventory of the volatile elements that relocate at 

pellet-pellet interfaces. Two other samples are taken for fuel characterization. The first one is used for 

radiochemical analysis (RCA) of the fission product and actinides inventory; enabling the average 

pellet burnup to be determined. The second one is used for optical microscopy (OM) and 
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determination of the local element composition by electron-probe micro-analysis (EPMA). An 

additional spare sample is also foreseen. The proposed cutting scheme is illustrated in Figure 2. Signal 

peaks, regularly spaced by about 11.8 mm, were exploited to identify pellet-pellet interfaces. The 

samples are located in the flat γ-activity zone, far enough away from the grid locations. Although the 

axial burnup is expected to be homogeneous over the sampling zone, leach test samples are proposed 

to be flanked by the sample used for burnup determination by RCA and the sample used for OM / 

EPMA. The spare sample is located the closest to the third grid location, next to the OM / EPMA 

sample. 

 

Table 2: Batch data – rod D05 

Fuel rod  
Rod total length    (mm) 3861.9 
Active fuel stack length   (mm) 3634.9 
Plenum length    (mm) 205.1 
Diametrical pellet-clad gap   (µm) 190 
He filling pressure    (bar) 20 
Fuel characteristics  
Material UO2 
Density    (% TD) 
Mass metal/oxide   (gU / gUO2) 

96.44 
88.13 

U isotopic composition   
  234U / Utot  (wt%) 0.038 
  235U / Utot  (wt%) 4.251 
  236U / Utot  (wt%) 0.001 
  238U / Utot  (wt%) 95.71 
Impurities / additives Not available yet 
Pellet dimensions  
Diameter     (mm) 9.294 
Length     (mm) 11.15 
Dish  

 Depth    (mm) 

 Spherical radius   (mm) 

0.34 
16.70 

Chamfer  

 Height    (mm) 

 Width    (mm) 

0.20 
0.57 
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Conclusions and Future work 

This article summarizes the fabrication data currently available for dissemination amongst First-

Nuclides partners. It will be complemented later by the detailed power history of the rod (i.e. including 

axial profile) for which calculations by the plant operator should become available in the coming 

weeks. Further characterization of the sample will be made using optical microscopy, radiochemical 

analysis and electron-probe microanalysis. 
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Abstract 

The selection of suitable high burn-up spent nuclear fuel samples available in the Hot Laboratory of 

the Paul Scherrer Institut (PSI) that will be used for leach experiments and XRF/XAS studies to 

investigate the instant release fraction (IRF) and the redox state of relevant radionuclides in the frame 

of the FIRST Nuclides project is described in this report. The data required for the characterization of 

fuel and cladding were collected and compiled. 

 

Introduction 

WP3 “Dissolution based release” of the FIRST Nuclides project targets the quantification of the fast 

release of gaseous and non-gaseous activation and fission products into the aqueous phase during spent 

nuclear fuel leach tests. The present report describes the characteristics of the high burn-up fuel 

samples selected for leach experiments foreseen to be carried out in the Hot Laboratory of PSI. 

The experiments will cover high burn-up UO2 and mixed oxide (MOX) spent nuclear fuels from 

boiling water reactor (BWR) and pressurized water reactor (PWR) having burn-up in the range of 57 to 

64 GWd/tHM. Special emphasis will be given to the determination of IRF values of Cs, I, Se and 14C as 

well as to the Se redox state. The results from these leaching experiments on fuel samples with and 

without cladding, as well as cladding fragments alone, should help gaining insight into the contribution 

of the cladding material onto the 14C IRF values.   

 

Characteristics of the selected fuel samples 

PSI is able to perform leach experiments on maximum nine fuel samples in parallel in the “Dissolution 

box” of the Hot Laboratory. The test matrix was defined by selecting three samples (cladded fuel, 
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cladding and fuel fragments) from an UO2 fuel rod irradiated in the Leibstadt BWR (KKL), as well as 

six samples (cladded fuel, fuel fragments, cladding with and without fuel residues) from the Gösgen 

PWR (KKG), of which four originate from an UO2 fuel rod and two from a MOX fuel rod. In addition 

to a previously published study (Johnson et al., 2012) fuel fragments and cladding of this MOX fuel 

rod will be leached separately in order to complete the available data set for this material. 

The information given is this paper is also compiled within the Deliverable 1.1 (“Characterisation of 

spent nuclear fuel samples to be used in FIRST-Nuclides – relevance of samples for the Safety Case”, 

issued June 2012). 
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High burn-up UO2 fuel from BWR 

Details on the selected UO2 BWR fuel rod from KKL are given in Table 1.   

Table 1: Characterisation data of the UO2 BWR fuel selected for PSI investigations 

Data category Parameter 

Reactor Leibstadt NPP, Switzerland 
Boiling Water Reactor  

Fuel assembly design 
information  

10 x 10 Lattice SVEA96 Optima, 
fuel assembly AIA003,  
rod position H6, Node 4 

Assembly / cladding 
material compositon 

Zircaloy-2, designation LK3/L 

Fuel rod data  Fission gas release: 2.26% 
Rod length as fabricated: 4146.6 
Rod length after irradiation: 4163.3 
Internal rod pre-pressure: 7 bar 

Fuel material (pellet) data UO2, initial enrichment: 3.9% 235U 
Pellet diameter (as fabricated): 8.77 ± 0.013 mm 
Pellet length: 10.7 ± 0.8 mm 
Density (spec) 10.52 ± 0.19 g/cm3  
Density as fabricated 10.48 – 10.54 g/cm3 
Grain size  6 ≤ x ≤ 25 μm 

Fuel sample data Sample position 455 mm to 520 mm from BEP 
Cladding sample data Zircaloy-2 with liner, designation LK3/L 

Cladding outer diameter: 10.30 ± 0.04 mm 
Cladding inner diameter: 8.94 ± 0.04 mm 
Liner Thickness 70 ± 40 μm 

Irradiation data Rod average burnup: 57.5 GWd/tU,  
exp. determined local burnup: 6.1% FIMA 

 Number of cycles: 7 
Date of loading: August 1998 
Date of unloading: April 2005 
Duration of irradiation: 2400 days 
Average linear power: ~ 160 W/cm 
Max. linear power: 270 W/cm 
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High burn-up UO2 fuel from PWR 

Details on the selected UO2 PWR fuel rod from KKG are given in Table 2.  

Table 2: Characterisation data of the UO2 PWR fuel selected for PSI investigations 

Data category Parameter 

Reactor Gösgen NPP, Switzerland 
PWR 

Fuel assembly design 
information  

KKG-14B-4021-01-0129  
Lattice geometry: 15x15,  
48 assemblies with 20 control rods/assembly 
Fuel rod diameter: 10.765 mm  
Fuel rod diameter after irradiation: 10.697 mm  

Assembly / cladding 
material composition 

Zircaloy 4, DX HPA4 (0.6Sn) 

Fuel rod data  Test rod 
Fission gas release: 13.2%, 51.5 bar  
Internal rod pre-pressure: 22 bar  
Rod length as fabricated: 3860 mm 
Rod length after irradiation: 3879 mm  
Active length: 3550 mm  

Fuel material (pellet) data UO2, initial enrichment: 4.3% 235U 
Fuel density (as fabricated): 10.45 g/cm3 

Fuel sample data Sample position 2620 mm to 2695 mm from BEP 
Cladding sample data Cladding outer diameter: 10.75 ± 0.05 mm 

Cladding inner diameter: max. 9.45 mm 
Max. Oxide: 36 µm 

Irradiation data Rod average burnup: 62.2 GWd/tU,  
exp. determined local burnup: to be performed 

 Number of cycles: 4 
Date of loading: 28.7.1999  
Date of unloading: 28.6.2003  
Duration of irradiation: 1324.43 days 
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High burn-up MOX fuel from PWR 

Details on the selected MOX PWR fuel rod from KKG are given in Table 3.   

Table 3: Characterisation data of the MOX PWR fuel selected for PSI investigations 

Data category Parameter 

Reactor Gösgen NPP 
LPWR 

Fuel assembly design 
information  

KKG-13-5024-10-676  
Lattice geometry: 15x15 
48 assemblies with 20 control rods/assembly 
Fuel rod diameter: 10.76 mm (measured) 
Fuel rod diameter after irradiation: 10.736 mm  

Assembly / cladding 
material composition 

Duplex ELS0.8b 

Fuel rod data  Test rod 
Fission gas release: 26.7%, 76.4 bar  
Internal rod pre-pressure: 22 bar 
Rod length as fabricated: 3859.0 mm 
Rod length after irradiation: 3886.1 mm  
Active length: 3550 mm  

Fuel material (pellet) data MOX, initial enrichment: 5.5% Pufiss  
Fuel density (as fabricated): 10.45 ± 0.15 g/cm3 
Fuel density after irradiation: 9.903 g/cm3 
Pellet diameter (as fabricated): 9.13 ± 0.013 mm 

Fuel sample data Sample position 2030 mm to 2070 mm from BEP 
Cladding sample data Cladding outer diameter: 10.75 ± 0.05 mm 

Cladding inner diameter: 9.30 ± 0.04 mm 
Max. Oxid: 36 µm 

Irradiation data Rod average burnup: 63.0 GWd/tU,  
exp. determined local burnup: 7.3% FIMA 

 Number of cycles: 4 
Date of loading: 30.06.1997 
Date of unloading: 07.07.2001 
Duration of irradiation: 1368 days 
Average linear power: 306 W/cm (average fuel 
rod power in 4 cycles) 
Max. linear power: approx. 430 W/cm 
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Abstract 

Dissolution rates of different isotopes from VVER fuel will be determined in the FIRST-Nuclides 

project based on activity measurements at the Paks NPP. The present report summarizes the design and 

operational characteristics of fuel that were stored in the given periods in the spent fuel storage pool of 

the power plant. The isotope inventories are also included in order to facilitate the calculation of 

fractional release rates.  

 

Introduction 

In the framework of the FIRST-Nuclides project the MTA Centre for Energy Research will produce 

fuel dissolution data on VVER fuel. There were two series of measurements at the Paks NPP that can 

be used for the evaluation of fuel dissolution in wet environment: 

a) In 2003 thirty fuel assemblies were damaged at the power plant during a cleaning tank incident. 

The integrity of fuel cladding was lost and most of the fuel pellets had direct contact with the 

coolant. The damaged fuel was stored in a special service area of the spent fuel storage pool for 

almost four years. During this period the activity concentration was regularly measured. Using 

the measured data the dissolution rates of different isotopes can be calculated. 

b) In 2009 a leaking fuel assembly was identified at the NPP. The assembly was removed from 

the reactor core and the placed in the spent fuel storage pool. The power plant decided to 

launch a special measurement programme for the investigation of activity release from the 

leaking fuel rod in wet storage conditions. The measured data allows us to produce dissolution 

rates for these conditions, too. 
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As a first step of analyses the fuel assemblies have to be characterised. In the present report the main 

geometrical, design and operational data will be summarised for both damaged and leaking VVER–

440 fuel assemblies. 

 

1. Characterisation of damaged fuel 

On 10 April 2003 severe damage of fuel assemblies took place during an incident at Unit 2 of Paks 

Nuclear Power Plant in Hungary (Hózer et al., 2010; NEA/CSNI/R, 2008; Slonszki et al., 2010; Hózer 

et al., 2009). The assemblies were being cleaned in a special tank below the water level of the spent 

fuel storage pool in order to remove crud buildup. That afternoon, the chemical cleaning of assemblies 

was completed and the fuel rods were being cooled by circulation of storage pool water. The first sign 

of fuel failure was the detection of some fission gases released from the cleaning tank during that 

evening. The cleaning tank cover locks were released after midnight and this operation was followed 

by a sudden increase in activity concentrations. The visual inspection revealed that all 30 fuel 

assemblies were severely damaged. The first evaluation of the event showed that the severe fuel 

damage happened due to inadequate coolant circulation within the cleaning tank.  

The damaged fuel assemblies were removed from the cleaning tank in 2006 and are stored in special 

canisters in the spent fuel storage pool of the Paks NPP. 

Following several discussions between expert from different countries and international organisations 

the OECD–IAEA Paks Fuel Project was proposed.  

The Project will focus on the numerical simulation of the most important aspects of the incident. A 

database necessary for the code calculations was collected. This data is available for the FIRST-

Nuclides project. 

1.1. Design characteristics of VVER-440  

The fuel assembly data were collected from open literature (Solonin et al., 1997). The main data is 

listed below. The list includes both working and follower type VVER-440 assemblies. Both types can 

be found among the damaged assemblies. 

Length of (working) fuel assembly 3217 mm 

Length of (follower) fuel assembly 3200 mm 

Shroud material Zr 2,5%Nb 

Cladding material Zr 1%Nb 
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Number of fuel rods 126

Fuel assembly key size 144 mm

Lattice pitch 12.2 mm

Fuel rod length 2550 mm

Fuel column length (working assembly) 2420 mm

Fuel column length (follower assembly) 2320 mm

Outer cladding diameter 9.15 mm

Cladding thickness 0.65 mm

Pellet diameter 7.57 mm

Central hole diameter 1.2-1.8 mm

Pellet-cladding gap 0.15-0.26 mm

Pellet shape chamfered

Pellet height 9-12 mm

Pellet density 10.4-10.8 g/cm3

Pellet densification max. 0.4%

Helium pressure 0.5 MPa

Free fuel element volume 15 cm3

Number of spacer grids 10

 

Some material properties of E110 (Zr1%Nb) cladding material has collected from open literature 

(Smirnov et al., 1997). 

Cladding yield strength at 20 oC 400-420 MPa

Cladding yield strength at 350 oC 180-190 MPa

Cladding ultimate strength at 20 oC 430-450 MPa

Cladding ultimate strength at 350 oC 200-210 MPa

Cladding uniform elongation at 20 oC 10%

Cladding uniform elongation at 350 oC 15%

Cladding total elongation at 20 oC 34-38%

Cladding total elongation at 350 oC 42-47%

Irradiated cladding yield strength at 20 oC 500-580 MPa

Irradiated cladding yield strength at 350 oC 340-370 MPa

Irradiated cladding ultimate strength at 20 oC 460-510 MPa
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Irradiated cladding ultimate strength at 350 oC 305-335 MPa 

Irradiated cladding uniform elongation at 20 oC 2-5% 

Irradiated cladding uniform elongation at 350 oC 4-6% 

Irradiated cladding total elongation at 20 oC 14-24% 

Radiated cladding total elongation at 350 oC 18-24% 

Number of perforations at the bottom of the shroud (working assemblies) 12 

Number of perforations at the top of the shroud (working assemblies) 12 

Diameter of perforations 9 mm 

 

1.2. Operational data of damaged fuel assemblies 

The operational data of fuel assemblies has been collected in order provide burnup specific data for 

each fuel assembly that was cleaned in the cleaning tank. Such data are necessary for the definition of 

initial fuel state (before start of cleaning operation). 

This part of database collection included several calculations, which were based on real fuel cycles of 

each assembly. 

The power histories of fuel assemblies are included in the database, so participants can carry out their 

own calculations (e.g. with fuel behaviour codes) if they consider it necessary. 

Operational data for Unit 2 and cycles 16-19 were provided by the Paks NPP. They included: 

 load map of archives for cycle 16 describing the burnup distribution at the beginning of cycle, 

 power distributions and histories for cycles 16-19, 

 refuelling matrices between 16-19 cycles. 

The burnup distribution in 10 axial nodes for each assembly was calculated using the GLOBUSKA 

module of the KARATE programme system (Hegedűs et al., 2002). 

The decay heat of each node of each assembly was calculated using power distribution and considering 

the storage time between reactor shutdown and the incident. The ORIGEN and TIBSO codes were 

applied for this purpose. The reactor-physics calculations were performed at the Reactor Analysis 

Department of the Atomic Energy Research Institute, Budapest.  

The fuel assemblies with similar power histories and of the same type (follower or working) were 

grouped into 6 groups and only one representative assembly was calculated for each group. Later all 
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fuel assemblies were assigned to their given values. This approach was applied in the following 

calculations, too. 

The assemblies groups are listed below with the factory No.: 

 1. assembly group (1.-6.): 60465, 60466, 60467, 60468, 60469, 60470 (standard assemblies 

with 10.8 MWd/kgU burnup) 

 2. assembly group (7.-11.): 53906, 53873, 53994, 53930, 53878 (standard assemblies with 26.7 

MWd/kgU burnup) 

 3. assembly group (12.): 57033(follower assembly with 10.1 MWd/kgU burnup) 

 4. assembly group (13.-18.): 58734, 59741, 59738, 59742, 59743, 59739 (follower assemblies 

with 21.1 MWd/kgU burnup) 

 5. assembly group (19.-24.): 61039, 61040, 61040, 61042, 61043, 61046 (follower assemblies 

with 13.3 MWd/kgU burnup) 

 6. assembly group (25.-30.): 61048, 61049, 61050, 60577, 60575, 60576 (follower assemblies 

with 13.1 MWd/kgU burnup) 

The burnup dependent parameters of each assembly were determined using the reactor-physics data 

and fresh fuel parameters with the TRANSURANUS (Lassmann, 1992) code, where slice 1 

correspondes to node 10. We used for our calculation averaged data on geometries. Table 1 the data 

on geometries are summarized. Please note that some differences may exist between these data (used 

for the present calculations) and the fuel data published in open literature (and given in previous 

chapter). 

Table 2 contains the main parameters of fuel assemblies at the end of cycle 19. The maximum value of 

calculated parameters and the minimum gap size, furthermore the calculated rod internal pressure at  

20 oC, 60 oC and 260 oC are presented. 

The calculated cladding axial deformation, fractional fission gas release, gap width, linear heat rate, 

pressure in the rod, tangential creep strain, fuel temperature, average fuel temperature, cladding 

tangential stress and the power history and profile of all assemblies are shown in for assembly No.7 

(53906) in Figure 1 as an example. 
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Table 1: Geometrical parameters of fresh assemblies 

 

 

Table 2: Collected values of assemblies at the end of cycle 19 

 

 

Parameter
Assembly

No. 12

Assemblies

No. 7-11

Assemblies

No. 13-18

Assemblies

No. 19-24

Assemblies

No. 25-30

Assemblies

No. 1-6

Friction coefficient between fuel and cladding: static friction 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01

Friction coefficient between fuel and cladding: sliding friction 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01

Height of axial slice 1-10 [mm] 2.32E+02 2.42E+02 2.32E+02 2.32E+02 2.32E+02 2.42E+02

Height of axial slice 11 [mm] 9.00E+01 9.00E+01 9.00E+01 9.00E+01 9.00E+01 9.00E+01

Inner fuel radius [mm] 7.25E-01 7.25E-01 7.25E-01 7.25E-01 7.25E-01 7.25E-01

Outer fuel radius [mm] 3.78E+00 3.78E+00 3.78E+00 3.78E+00 3.78E+00 3.78E+00

Inner cladding radius [mm] 3.88E+00 3.88E+00 3.88E+00 3.88E+00 3.88E+00 3.88E+00

Outer cladding radius [mm] 4.55E+00 4.55E+00 4.55E+00 4.55E+00 4.55E+00 4.55E+00

Surface roughness fuel [mm] 1.80E-03 1.80E-03 1.80E-03 1.80E-03 1.80E-03 1.80E-03

Surface roughness clad [mm] 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03

Fillgas pressure [MPa] 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01

Fillgas temperature [oC] 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01

Upper plenum volume (maximum) [mm3] 4.26E+03 4.26E+03 4.26E+03 4.26E+03 4.26E+03 4.26E+03

Gap volume (maximum) [mm3] 5.73E+03 5.97E+03 5.73E+03 5.73E+03 5.73E+03 5.97E+03

Volume of central void (maximum) [mm3] 3.83E+03 4.00E+03 3.83E+03 3.83E+03 3.83E+03 4.00E+03

Total free volume [mm3] 1.38E+04 1.42E+04 1.38E+04 1.38E+04 1.38E+04 1.42E+04

Friction coefficient between fuel and cladding: static friction 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01

Parameter
Assemblies

No. 7-11

Assemblies

No. 13-18

Assembly

No. 12

Assemblies

No. 19-24

Assemblies

No. 25-30

Assemblies

No. 1-6

Max. claddingaxial deformation [mm] 7.62E+00 6.95E+00 5.61E+00 6.32E+00 6.26E+00 5.79E+00

Max. burnup [MWd/kgU] 3.14E+01 2.74E+01 1.61E+01 1.61E+01 1.59E+01 1.26E+01

Average burnup [MWd/kgU] 2.65E+01 2.19E+01 1.04E+01 1.38E+01 1.36E+01 1.07E+01

Max. fractional fission gas release [%] 1.76E-03 1.53E-03 9.38E-04 8.92E-04 8.80E-04 6.92E-04

Min. gap size [] 3.89E+00 4.47E+00 2.26E+01 2.50E+01 2.57E+01 3.63E+01

Max. linear heat rate [W/mm] 2.19E+01 2.06E+01 2.24E+01 2.28E+01 2.21E+01 1.75E+01

Max. pressure in the rod [MPa] 2.05E+00 1.92E+00 1.76E+00 1.76E+00 1.75E+00 1.60E+00

Rod internal pressure at 20 oC [MPa] 7.43E-01 7.09E-01 6.41E-01 6.53E-01 6.51E-01 6.28E-01

Rod internal pressure at 60 oC [MPa] 8.46E-01 8.06E-01 7.29E-01 7.42E-01 7.40E-01 7.15E-01

Rod internal pressure at 260 oC [MPa] 1.38E+00 1.32E+00 1.19E+00 1.21E+00 1.20E+00 1.16E+00

Cladding tangential creep strain [%] -3.81E-01 -3.14E-01 -1.49E-01 -2.59E-01 -2.49E-01 -1.53E-01

Max. fuel temperature [oC] 9.10E+02 9.12E+02 9.76E+02 9.87E+02 9.64E+02 8.06E+02

Max. average fuel temperature [oC] 6.90E+02 7.17E+02 7.55E+02 7.62E+02 7.48E+02 6.51E+02
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Figure 1: Representation of the calculated burnup dependent parameters, power history and profile for assembly  
No. 7. 

 

1.3. Isotope inventory 

The isotope inventory of the 30 assemblies was calculated using the ORIGENARP module of the 

SCALE4.4a program system.  The calculations yielded the concentrations and activities of isotopes for 

the six assembly groups. The data was assigned to the each fuel assembly. 

The typical material composition was considered in the calculations with following isotopes and 

elements: 234U, 235U, 236U, 238U, Hf, Nb, Sn, Zr. The calculations were done with 44 energy groups 

gamma and neutron spectrum directory from time of shutdown of Unit 2 of Paks NPP for the next 

calculated calendar days: 0 (day of shutdown), 3, 10, 13 (day of incident), 30, 60, 120, 240, 365 and 

760. The database includes 138 isotopes in the above 10 times for each assembly. 
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The data of 6 assemblies were used to characterise the assemblies (e.g. fission product content). It 

could be seem that the order of activities of assemblies were very close to each other after shutdown. 

The calculations were carried out at the Reactorphysics Department of Paks NPP. The total activities 

of 30 assemblies is shown in Table 3. 

The total activity of assemblies and assemblies groups after shutdown were determined by 3 main 

groups like light elements (activated structural materials of assemblies – assembly claddings, spacer 

grids, rod claddings), actinides and fission products. 

The light elements are monotonous decreasing in time and their activity was significant part of the 

total activity of assembly at the time of the incident. These elements are 91Zr, 92Zr, 94Zr, 96Zr, 93Nb, 
119Sn, 120Sn. 

The activity of actinides is important in all examined periods compared to total activity of calculated 

assemblies. It includes the 234U, 235U, 236U, 238U, 237Np, 235Np, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 
242Cm, 244Cm. The release of these elements with all probability can be taken place only if they 

dissolve from pellets. 

Activity of fission products are decreasing in time and their contribution to the total activity is 

important only at the beginning period after the incident. Their activities will converge to a saturation 

value, which represents a considerable part of the release at the incident. 

 

2. Characterisation of the 70873 leaking fuel assembly 

The No. 70873 fresh follower fuel assembly was loaded into position No. 33 of cycle 22 of Unit 4 at 

the Paks NPP. The enrichment of U was 3,82%. The design characteristics of this assembly are the 

same as that of damaged fuel described in chapter 1.1.  

2.1. Operational data of leaking fuel assembly 

The operational history of the assembly was provided by the power plant. 

The assembly was operated for one year and was removed from the core during the refueling period. 

For this reason the assembly reached only 14 MWd/kgU burnup. 

According to the analyses of primary coolant activities, this assembly had only one single leaking fuel 

rod, the other 125 rods were intact. 

 



Hózer  et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides  

96 

Table 3: Isotope inventory of 30 damaged fuel assemblies at the reactor shutdown 

Isotope Activity [Bq] Isotope Activity [Bq] Isotope Activity [Bq] 
239Np 2,30E+18 131I 1,23E+17 127Te 8,90E+15 

133I 2,61E+17 88Rb 1,06E+17 133mXe 8,05E+15 
133Xe 2,51E+17 131Te 1,06E+17 241Pu 7,67E+15 

135I 2,47E+17 105Ru 1,05E+17 137Cs 7,22E+15 
140La 2,45E+17 88Kr 1,04E+17 129mTe 7,11E+15 
99Mo 2,37E+17 91mY 1,03E+17 137Ba 6,90E+15 
140Ba 2,35E+17 105Rh 9,78E+16 90Y 6,53E+15 
95Zr 2,33E+17 147Nd 8,55E+16 90Sr 5,90E+15 
95Nb 2,30E+17 135Xe 7,44E+16 134Cs 5,75E+15 
97Nb 2,25E+17 237U 7,12E+16 111mAg 5,09E+15 
97Zr 2,23E+17 149Pm 6,36E+16 111Pd 5,08E+15 

141Ce 2,16E+17 135mXe 5,17E+16 111Ag 5,04E+15 
141La 2,15E+17 129Sb 3,78E+16 136Cs 3,08E+15 

97mNb 2,12E+17 106Rh 3,73E+16 242Am 2,48E+15 
99mTc 2,09E+17 85mKr 3,66E+16 244Am 1,71E+15 
143Ce 2,06E+17 129Te 3,58E+16 242Cm 9,69E+14 
143Pr 2,00E+17 106Ru 3,20E+16 125Sb 5,77E+14 
92Y 1,86E+17 153Sm 3,07E+16 181Hf 4,86E+14 
92Sr 1,85E+17 105mRh 2,99E+16 154Eu 2,33E+14 
91Y 1,83E+17 109Pd 2,89E+16 155Eu 1,22E+14 
132I 1,81E+17 131mTe 2,25E+16 110mAg 1,09E+14 

132Te 1,78E+17 151Pm 2,22E+16 122Sb 8,19E+13 
91Sr 1,78E+17 83Br 1,70E+16 180mHf 4,37E+13 

103Ru 1,72E+17 83mKr 1,70E+16 239Pu 3,62E+13 
103mRh 1,72E+17 147Pm 1,69E+16 124Sb 3,35E+13 

89Sr 1,46E+17 238Np 1,65E+16 3H 3,18E+13 
145Pr 1,39E+17 148Pm 1,49E+16 240Pu 3,06E+13 
93Y 1,38E+17 156Eu 9,60E+15 244Cm 2,30E+13 

144Pr 1,25E+17 243Pu 9,30E+15 175Hf 1,88E+13 
144Ce 1,23E+17 127Sb 9,20E+15 242Am 4,68E+12 
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The power of axial nodes of the assembly was calculated using the power normalized power 

distribution and the power of assembly. The power of axial nodes of assembly was divided by 126 

(total number of fuel rods) and by the length of nodes that determined the linear heat rate of one rod. 

The FUROM code (Kulacsy, 2011) was applied for the calculation of the coolant temperature from the 

inlet temperature of core for each axial nodes. The fast neutron flux was determined by the FUROM, 

too. The initial data for FUROM calculations are given in Table 4.  

 

Table 4: Technological parameters of fuel rod used in the calculations 

Parameter Value of parameter 

inner fuel radius [mm] 0.675 

outer fuel radius [mm] 3.7925 

surface roughness fuel [μm] 2 

inner cladding radius [mm] 3.88 

outer cladding radius [mm] 4.55 

surface roughness clad [μm] 1 

active length of rod [m] 2.36 

enrichment [%] 3.82 

Relative density of fresh fuel [-] 0.962 

relative density after densification [-] 0.97 

fuel grain size [μm] 14 

He fillgas pressure [bar] 6 

plenum volume [cm3] 8.5 

coolant inlet temperature [ºC] 266 

 

Figure 2 shows the linear heat rate versus time for each of axial nodes. While the power of some 

nodes increased, some others decreased, but the total power of rods in the follower assembly decreased 

during the cycle. 
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Cycle 22 of Unit 4 was 319,95 effective  operational days based on measured data. The cycle started at 

30.05.2008 and finished at 24.04.2009. Calculated burnup of 70873 assembly was 14,137 MWd/kgU, 

so the calculated power was 5,097 MW. The isotope inventory of 70873 assembly during the operation 

and the storage was calculated based on these data by ORIGEN-ARP 5.01 program (Table 5.). The 

time steps in the calculations were: 0.3, 1, 3, 10, 30, 90, 150, 250, 300, 319.95 during the operation and 

1, 3, 10, 30, 90, 150, 250, 350, 400, 450 during the storage. 

 

Table 5: Isotope inventory of one fuel rod in the leaking 70873 fuel assembly at the reactor shutdown 

Isotope Mass [g] Activity [Bq]
239Np 8,31 5,67E+14 
140La 0,47 7,86E+13 

95Zr 11,77 7,40E+13 
95Nb 6,35 7,31E+13 

141Ce 8,12 6,80E+13 
99Mo 0,42 5,88E+13 

99mTc 0,04 5,32E+13 
103Ru 5,54 5,24E+13 

89Sr 5,49 4,69E+13 
144Ce 36,38 3,41E+13 
97Nb 0,00 2,73E+13 
97Zr 0,05 2,72E+13 

106Ru 7,74 7,61E+12 
137Cs 62,21 1,59E+12 

90Sr 32,14 1,30E+12 
134Cs 2,82 1,08E+12 
136Cs 0,04 8,06E+11 
125Sb 0,37 1,12E+11 

242Cm 0,08 7,74E+10 
154Eu 0,51 3,74E+10 
239Pu 552,90 2,48E+10 
155Eu 0,16 2,35E+10 

110mAg 0,01 1,77E+10 
240Pu 97,59 1,61E+10 

3H 0,00 1,12E+10 
122Sb 0,00 9,68E+09 
124Sb 0,00 7,67E+09 

244Cm 0,04 1,04E+09 
241Am 0,62 6,25E+08 
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3. Conclusions 

The main characteristics of the damaged and leaking fuel VVER-440 fuel assemblies have been 

collected.  The fuel damage took place in an incident after reactor shutdown, while the leaking fuel 

was detected during normal operation.  

There were no special examination of the fresh fuel assemblies before loading them into the reactor 

core, for this reason factory data are used to characterise the fuel. The operational parameters were 

derived using power histories of from the NPP. The calculations were carried out with fuel behavior 

codes FUROM and TRANSURANUS. 

The isotope inventories were determined using the real power histories of each fuel assembly for 

almost one thousand isotopes. For future evaluation only the long lived isotopes will be used. The 

inventory is important for the determination of fractional releases. 

30 fuel assembly were stored in the same pool when fuel was damaged. The activity release resulted 

from all assemblies. The calculation of dissolution rates should use some averaged values. 

From the leaking fuel assembly only one out of 126 fuel rods was in contact with water, but the 

leaking rod was not identified. The averaged values from this assembly can be used for the 

characterization of a source rod and for the evaluation of activity data from this type of assembly. 
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Abstract 

To prepare the modelling studies on the initial speciation of fission and activation products of low 

concentrations in high burn-up LWR fuel, important initial and boundary conditions were derived. 

These include the burn-up history and decay of fission products, temperatures during irradiation in the 

reactor and during storage in the laboratory, properties of the rim structure, such as thickness, rim 

burn-up, xenon concentrations and porosity.  

 

Introduction 

In safety assessments for disposal of spent nuclear fuel in deep underground repository, failure of 

canisters and loss of the integrity of fuel rods is considered in the long term. Some of the radionuclides 

within the spent fuel material will be directly exposed to water contact after the barrier failure. The 

modelling studies performed at KIT aim on the speciation of activation and fission products of low 

concentrations in high burn-up LWR fuel before contact to water. This information is a prerequisite for 

a multi-scale modelling of the migration / retention processes of activation and fission products in the 

spent nuclear fuel, in the cladding, and for estimation of the fission product total release. In order to 

develop and apply such models for scale-up of release processes from the micro-scale level to the fuel-

rod scale, boundary and initial conditions are required.  In this context KIT is going to calculate the 

initial speciation of radionuclides of the instant / fast release fraction as function of irradiation history, 

temperature and other critical parameters of the 50.4 GWd/tHM PWR fuel, used in experimental studies 

at KIT.  

 

 



Kienzler  et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides  

104 

Following calculations were performed to provide for the initial and boundary conditions: 

 Calculation of the burn-up and decay history using the webKorigen software package 

(Nucleonica GmbH, 2011). 

 Calculation of the rim zone burn-up 

 Calculation of the rim zone thickness 

 Calculation of the porosity 

 

Characteristic data of the KIT fuel 

The studied 50.4 GWd/tHM PWR Gösgen fuel consists of pure UO2, fabricated by Kraftwerk Union 

AG using the NIKUSI process (Stratton, 1991). The fuel rod was irradiated in the PWR Gösgen 

(KKG), Switzerland. The data given in Table 1 characterize the studied N0204 KKG-BS fuel rod 

segment and are used for the modelling. 

 

Table 1: Characteristic data of the fuel rod segment N0204 KKG-BS studied by KIT 

Property Value

initial enrichment:  3.8% 235U

pellet diameter: 9.3 mm

pellet density 10.41 g/cm3

rod diameter:  10.75 ± 0.05 mm

zircaloy wall thickness: 0.725 mm

initial radial gap:  0.17 mm

number of cycles:                     4 

average burn-up: 50.4 GWd/tHM

av. linear power:  260 W/cm

max. linear power:  340 W/cm

discharge date:  27. May 1989

duration of irradiation  1226 days

storage time 23 years
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Fission Product Inventories 

The fissions per initial metal atom (FIMA) provide a measure for the burn-up of spent nuclear fuel. 

There are various approaches to calculate FIMA. In the present study the approach of (Nakahara et al., 

1990) was applied, which is described in equation (1): 

FIMAሺ%ሻ ൌ
ቆ
భబబ∙ ొౚలబ

భరఴ

౑∙γభరఴ
ቇ

ቆଵାౌ౫
౑
ା

ొౚలబ
భరఴ

౑∙γభరఴ
ቇ
	 eq.1 

U, Pu, 148Nd denote the molar fractions of the respective radioelements / radionuclides, 148 denotes the 

fission yield for the mass 148. All these isotopes decay to the stable isotope 148Nd. Based on an 

effective energy release of 205.4 MeV per fission, the burn-up (GWd/tHM) is then obtained by 

multiplying the FIMA (%) by the conversion factor 9.60.  

Calculations of the burn-up and the decay history of the 50.4 GWd/tHM PWR Gösgen fuel were 

performed using the webKorigen software package (Nucleonica GmbH, 2011). The code was applied 

via the web portal www.nucleonica.net. Input parameters were the initial enrichment, the final average 

burn-up, the number of reactor cycles and the decay time. The output included activities, amount of 

radionuclides (in gram and mol) and decay heat per radionuclide and selected decay time. More 

options were available, but these were not relevant for the present modelling study. 

 

Boundary conditions for the temperature history of the 50.4 GWd/tHM fuel rod segment  

The central temperature of a fuel rod was calculated according to following equations: 

T = QR2/(4) eq.2 

or alternatively  

T = linear power rate /(4) eq.3 

where Q denotes the heat production rate, R the radius of the fuel rod and  the heat conductivity. The 

heat conductivity varies as a function of the burn-up between 5 W m-1 K-1 for fresh UO2 fuel and      

2.5 W m-1 K-1 for irradiated fuel (Lucuta et al., 1996). Using equations (2) and (3) and the data of the 

50.4 GWd/tHM PWR Gösgen fuel (Table 1), T values in the range of 827 to 1000 K were calculated. 

The coolant’s temperature in the Gösgen PWR was 325°C. Therefore, the maximal temperature during 

irradiation of the studied N0204 KKG-BS fuel rod segment was estimated to be above 1300°C. 
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Up to present, the fuel rod segment was stored over a period of 23 years. The radiooactive decay 

reduced the heat production rate to 9.39·10-4 W/g corresponding to 9.77·10-4 W/cm3. The heat rate was 

controlled by inserting the N0204 KKG-BS fuel rod segment into a thermal insulation package and 

measuring the temperature at the surface of the rod segment. Measurements and calculations 

correspond well, under the assumption that 82% of the total decay heat remained in the rod segment. 

The result shows that not only the total calculated / decay heat, but also 40 % of the  decay heat 

remains in the UO2 matrix. The heat development in the insulated rod was simulated using the 

FLEXPDE code; data for heat capacity of UO2 fuel was taken from IAEA TECDOC-949 (IAEA, 

1997). 

 

Calculated rim zone burn-up and thickness of the 50.4 GWd/tHM fuel  

Properties of the rim zone were analyzed by many authors, e.g. (Bremier et al., 2002; Koo et al., 2001; 

Manzel and Walker, 2000; Matzke and Spino, 1997; Roudil et al., 2009; Spino et al., 1996; Une et al., 

1992). Koo et al. (2001) reviewed published literature with respect to the effect of burn-up on the rim 

thickness and on the fission gas content. Based on the analysis of these data, the mean local burn-up 

within the entire rim region is estimated to be 1.33 times the average pellet burn-up. This finding is 

consistent with local neodymium profile measurements. The best fit was represented by eq. 4, 

Rt = 3.55 BUR - 185  eq.4 

where Rt is the rim thickness (µm) and BUR is the rim burn-up (GWd/tHM). A pessimistic function that 

bounds all the data is also given in (Koo et al., 2001) by  

Rt = 5.28 BUR - 178  eq.5 

However, use of the latter expression suggests that significant rim thicknesses exist even in fuels with 

burn-ups in the range of 30 GWd/tHM. Since this seems completely inconsistent with microstructural 

studies, a revised expression was developed, given by Johnson (Johnson et al., 2005): 

Rt = 5.44 BUR - 281  eq.6 

Using the data of the 50.4 GWd/tHM PWR fuel, following results were obtained: 

Rim zone burn-up: 67.0 GWd/tHM 

Rim zone thickness: 83.7 µm 
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Calculated Xenon concentrations in the rim zone of a 50.4 GWd/tHM fuel pellet 

Koo (Koo et al., 2001) quoted an expression derived by Lassmann et al. (1995) for calculating the 
concentration of fission gas (Xe) in the rim zone. 

ܺ݁௠ ൌ ܿ ∙ ቂଵ
௔
൅ ቀܤ ௥ܷ௜௠

଴ െ ଵ

௔
ቁ ݁ି௔൫஻௎ೝ೔೘ି஻௎ೝ೔೘

బ ൯ቃ eq.7 

where c denotes the Xe production rate (wt% per unit burn-up (1.46·10-2 wt.% per GWd/tHM), a 
denotes a fitting constant (0.0584, BUrim is the rim burn-up and BU0

rim is the threshold burn-up for rim 
formation (30 GWd/tHM). The Xe present in rim pores is calculated by  

Xepores = c BUrim-Xem eq.8 

For the 50.4 GWd/tHM PWR Gösgen fuel, following results were calculated: 

Xenon in the matrix of rim Xe 0.026 wt.% 

Xe in the rim pores Xepores 0.953 wt.% 

The result shows that almost the complete Xe inventory of the rim is located in pores. 

 

Calculated rim porosity of the 50.4 GWd/tHM fuel 

The thermal conductivity of UO2 fuel has been investigated since many years, as it represents the most 

important property influencing the fuel operating temperature, and in turn affecting directly fuel 

performance and behaviour, particularly its fission-gas release and swelling. Therefore, the factors 

influencing the thermal conductivity have been analyzed. Very important in this context is the porosity 

of the UO2 matrix (Lucuta et al., 1996). Spino (Spino et al., 1996) investigated the rim microstructure 

in PWR fuels in the burn-up range 40 to 67 GWd/tHM and provided for tabulated data on burn-up, 

radial position and measured porosity, and pore sizes in 2D and 3D. Spino also presented an equation 

allowing the calculations of the burn-up – porosity relation: 

Porosity = (burn-up - BUo)  d1 + exp(-d2+d3r/r0) eq. 9 

BUo, d1, d2, d3 denote fit parameters, r the radius and r0 represents the maximum pellet radius. BUo is 

the lowest burn-up for which eq.9 is valid. The data of (Spino et al., 1996) and eq.9 were used to fit 

their data in order to obtain the following values for the d1, d2, d3 fit parameters. 

BUo 22 GWd/tHM

d1 1.2310-1
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d2 37

d3 39.6

Using these fit parameters, for 50.4 GWd/tHM PWR Gösgen fuel following data were obtained: 

Rim porosity (r/r0 = 0.9): 3.8 % 

Rim porosity (r/r0 = 1): 17.0 % 

average rim porosity (0.9r/r01): 6.2 % 

 

Outlook 

For modelling the speciation of activation and fission products, information on different available 

databases was compiled. This included the HSC Chemistry 7.0 software program for process flow-

sheet simulation, which contains specific calculation modules and twelve databases together with 

extensive thermo-chemical, heat transfer and mineralogical data. 

Furthermore, the MTDATA base is considered, which provides for a very extensive thermodynamic 

database for oxide systems. The MTDATA base is available via the web portal 

http://resource.npl.co.uk/mtdata/NPLOxideDatabase.htm. It includes full coverage of Zr and partial 

data for U oxides. However, this database contains only limited data for fission products. Since further 

development of MTDATA is integrated in a European project with Rudy Konings (JRC-ITU, 

Karlsruhe) on data for nuclear fuels and their interaction, data for most of the fission products will be 

acquired in future.  

Another promising option for modelling the speciation of activation and fission products is the GEMS 

code and database developed by D. Kulik (PSI, Villigen). GEMS is applicable for thermodynamic 

modelling of aquatic (geo)chemical systems by Gibbs Energy Minimization and is available via the 

web portal http://gems.web.psi.ch/. 
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Abstract 

In the framework of the FIRST-Nuclides program, SCK•CEN will conduct leaching experiments  on a 

PWR UOX fuel, taken from the Belgian Tihange 1 reactor, with an rod average burnup of 50 

MWd/kgHM in order to determine the rapid release of some of the most critical radionuclides. The main 

experimental parameters have been defined, i.e. the type of fuel, the number of tests and the sample 

preparation, the experimental setup, the leach test conditions (medium, atmosphere), the sampling 

scheme and the surface and solution analyses.  Preparations are on-going, with the start of leach tests 

planned for early 2013. The average pellet burnup of the samples tested will be determined 

analytically, together with a detailed characterization of the microstructure.  

 

Introduction 

As one of the partners of FIRST-Nuclides with a hot-cell infrastructure and the required analytical 

laboratories, SCK•CEN will perform leach tests on spent fuel samples with a relatively high burn-up. 

For this purpose, a fuel rod was selected from the spent fuel stock available at SCK•CEN for which the 

characteristics are known and can be made public. 

The selected fuel samples originate from a PWR UOX fuel from the Belgian Tihange 1 reactor with an 

average burnup of 50 MWd/kgHM. More information about this fuel is given in the paper from 

SCK•CEN's contribution to WP1 of FIRST-Nuclides (Govers et al., 2012). 

The results obtained from leach tests depend on how the fuel samples are prepared before leaching 

commences. Cladded fuel segments and decladded fuel fragments, or fragments from the centre or the 

periphery of the pellet will exhibit different leaching behaviours. A combination of differently 
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prepared samples provides the most complete information, but for budgetary reasons, the number of 

tests with different samples has been limited to two at SCK•CEN. 

In the following sections, we describe the sample preparation, the sample pre-test characterization, the 

experimental setup, the leachate composition and the solution analyses, before ending with our 

conclusions and future work. The details of the methods presented may have to be changed if 

difficulties occur when they are applied. 

 

Sample preparation 

Two fuel segments, about 2.5 cm long, including one whole and two half pellets, will be taken from 

the central part of the fuel rod (Govers et al., 2012), and prepared as samples for leach testing. 

As agreed with the other partners in WP3, every participating laboratory should perform  at least one 

test with an intact cladded fuel segment. So the first segment will be used as it is after cutting, without 

any further treatment. For a second test, the cladding will be cut open longitudinally on opposite sides 

of the fuel segment. The two cladding halves with the attached fuel will be separated from each other 

by applying force with a simple tool (e.g. screwdriver). The fuel attached to the cladding halves will 

not be detached. The leach test will be done with the two cladding halves, the attached fuel, and the 

fuel fragments that may come loose during the sample preparation, all in one leach vessel. 

A third, adjacent segment will be cut in order to determine the burnup by means of radiochemical 

analysis. 

A fourth, shorter segment, will be cut for the microstructural characterization of the fuel before 

leaching. That same sample will also be analysed by electron-probe microanalysis (EPMA) to 

determine the local concentration of various elements. 

 

Sample pre-test characterization 

Although fabrication data and detailed irradiation history will be available for the project, a cross-

check between these estimations and experimental observations of the state of the irradiated fuel is 

needed in order to reduce uncertainties on e.g. available free surfaces for leaching and on fission 

product inventory and location at the end of the irradiation. Good agreement between experiments and 

theoretical models for the behaviour of "observable" fission products would allow us to make firm 

hypotheses about the location of the few isotopes for which the experimental sensitivity is too low. 
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Burnup analyses 

The average pellet burnup will be determined by radiochemical analysis (RCA) of a small fuel 

segment (equivalent of 2 pellets) cut in the vicinity of the test samples. The proposed cutting scheme 

specifies a cutting from mid-pellet to mid-pellet in order to keep a relevant inventory of Cs, bearing in 

mind the relocation of Cs to the pellet-pellet interface observed upon γ-scanning. The burnup 

determination is based on the measurement of various burnup indicators, mainly Nd isotopes, by 

TIMS, and confirmed by 137Cs and 144Ce, using γ-spectrometry. Other relevant isotopes in terms of the 

fast / instant release fraction will also be measured, within the range permitted by the technique. 

 

Microstructure analysis 

A segment (1 pellet height, cut from mid-pellet to mid-pellet) of the rod fuel will be examined using 

different surface analysis techniques. After polishing, optical microscopy and Scanning Electron 

Microscopy (SEM) will be used to observe the surface state and the different zones before the leach 

test. This will provide information about the microstructure of the fuel, such as e.g. the cracking 

pattern or the radial extent of the high burnup structure zone. Inspection of the outer part of the pellet 

will determine whether contact was established between the pellet and the cladding, and the extent of 

the interaction layer. A Telatom 3 optical microscope and a JEOL JSM-6310 SEM are installed inside 

a hot cell and licensed for the analysis of irradiated fuel pellets. 

 

Electron-probe microanalysis 

That very same sample used for microstructure analysis will also be subjected to electron-probe 

microanalysis (EPMA). A CAMECA SX-100R instrument, installed inside a hot cell, is available at 

SCK•CEN. The instrument has four shielded spectrometers and can analyse all elements from C to 

Cm. The shielding of the spectrometers protects the detectors from the direct radiation of the sample 

and allows the analysis of radioactive samples. The EPMA technique enables the quantitative 

determination of the local concentration of selected elements with a detection limit up to 100 ppm. 

Contrary to the radiochemical burnup analysis, which provides isotopic information, EPMA concerns 

only the elemental content. It can, however, sample much smaller zones (typically of the order of 

hundreds of micrometers) and provide local information. The radial distribution of Xe, Cs and Nd 

(together with U and Pu) will be measured using this technique. Local inventory in a grain is also 

possible and would indicate the extent of depletion of some elements close to grain boundaries. These 

measurements will be performed directly inside the hot cell. 
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Leachate composition 

The leachate composition can have an influence on the leaching behaviour of specific radionuclides, if 

their release is solubility controlled. Leachants of different pH can thus result in different leaching or 

different stability in solution of the leached components (e.g. 14C in carbonate form can volatilize if the 

pH is too low). In the case of redox sensitive radionuclides, such as Se and Tc, the redox potential of 

the medium is even more important. The oxidation of the fuel will cause a faster release of 

radionuclides from the fuel matrix, and may increase the solubility of Se and Tc, if they are originally 

present in reduced form. 

To eliminate the uncertainty linked to the use of different leachates when the tests with different fuels 

are compared, there is agreement within WP3 to use a standard leachant, consisting of 19 mM NaCl + 

1 mM NaHCO3. The pH of this solution is around 7.4. No pH buffer will be added to the solution, 

because important pH changes are not expected.  

 

Solution analyses 

All leaching vessels will be sampled simultaneously at four different points in time, the final sampling 

being planned for one year after the start of the tests.  

Only the most relevant radionuclides will be measured, using either mass-spectrometry or 

radioanalytical techniques.  

The concentration of  238U will be used to estimate the dissolution rate of the fuel and will be measured 

by means of ICP-MS.  

ICP-MS will permit the determination of the concentrations of 93Zr, 129I, 135Cs, 137Cs, 99Tc, 107Pd and 
126Sn releases into solution during the dissolution of the fuel. Some of these radionuclides (especially 
107Pd, 129Sn and 99Tc) may have concentrations close to the detection limit. 

The concentrations of 59Ni, 94Nb and 137Cs will be measured by γ- or X-ray-spectrometry. The 

concentrations of 14C, 63Ni and 90Sr will be determined using liquid scintillation counting (LSC).  

In some cases, prior to the analyses, a separation will be required to avoid interference with others 

radionuclides. This will be the case for 14C, 59Ni, 63Ni, 94Nb and 90Sr.  
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Although the measurement of the 14C-, 59Ni-, 63Ni- and 94Nb-content of waste matrices is performed 

routinely at SCK•CEN, their analysis in a spent fuel and/or in leachates thereof has not previously 

been performed at SCK•CEN. An evaluation and optimization of existing methodologies will have to 

be performed. 

Analyses of 79Se are not planned. 

 

Conclusions and Future work 

The main parameters of the experiments to be performed by SCK•CEN have been fixed. The 

equipment for the leaching experiments has been ordered and should be delivered before the end of 

2012. In the meantime, the accessory equipment is being prepared, including for the longitudinal 

cutting, and the analytical scheme is being worked out in detail. The cutting of the fuel segments is 

planned for the end of 2012 or January 2013, depending on the exact availability of the cutting 

equipment and hot cell.  

The leaching tests are expected to start in the first months of 2013, such that the analytical results from 

the last sample (after one year) will be available mid-2014. The first analytical results will be available 

in the course of 2013. The average pellet burnup analysis is planned in parallel in 2013. 
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Abstract 

A high burn-up UOX fuel, discharged from the KKG pressurized water reactor (PWR Gösgen, 

Switzerland) was chosen for leaching experiments, which will be conducted at KIT-INE to determine 

the instant / fast release fraction of safety relevant radionuclides. The studied fuel rod segment 

achieved an average burn-up of 50.4 GWd/tHM and a maximal linear power of 340 W/cm during 

reactor operation. Besides the burn-up and linear power rate, the instant / fast release fraction of the 

spent nuclear fuel depends on various parameters related to the manufacturing and irradiation history, 

which are documented in the present communication. Characteristics of the selected spent nuclear fuel 

sample are compared to characteristics of other high burn-up fuels studied within the FIRST-Nuclides 

project.    

 

Introduction 

In safety assessments for disposal of spent nuclear fuel (SNF) in deep underground repository, failure 

of canisters and loss of the integrity of fuel rods is considered in the long term. Some of the 

radionuclides within the SNF material will be directly exposed to water contact after the barrier failure. 

Experimental studies performed at KIT-INE aim on the fast / instant release of activation and fission 

products from a high burn-up (HBU) fuel upon contact with water. This information is a prerequisite 

for a reliable assessment of the migration / retention processes of activation and fission products in the 

spent nuclear fuel, in the cladding, and for estimation of the fast / instant release fraction (IRF). The 

IRF depends on critical characteristics of the SNF such as manufacturing process, burn-up history and 

fuel temperature history and storage time.  

For the experimental and theoretical studies within the FIRST-Nuclides project, KIT-INE provides a 

HBU-SNF rod segment in the ownership of KIT, where all data and findings can be published without 
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Characteristics of the selected 50.4 GWd/tHM PWR fuel 

The data given in Table 1 characterize the studied segment N0204 of the KKG-BS fuel rod SBS1108. 

The studied HBU-SNF consists of pure UO2, fabricated by Kraftwerk Union AG using the NIKUSI 

sintering process (Stratton et al., 1991). NIKUSI is a short-term fast sintering process under controlled 

oxidizing condition at a temperature (< 1300 °C) below the temperature range of conventional UO2 

pellet sintering processes (Kutty et al., 2004). Stratton et al. (1991) reported an UO2 stoichiometry of 

U/O = 2.002.  Generally, the fuel pellets of the segment had been initially enriched with 3.8% 235U. 

Two pellets adjacent to the upper and lower isolation pellets were made of Unat (Figure 2). The 

cladding material is Zircaloy-4 (DX ESL 0.8) with an external and internal diameter of 10.75  0.05 

mm and  about 9.3 mm, respectively; the wall thickness is specified as 0.725 mm (Kernkraftwerk 

Gösgen, 2010; Stratton et al., 1991).  

The lattice geometry of the fuel assembly consisted of a 15×15 array of fuel rods. 205 of the 225 

positions per assembly were occupied with fuel rods, the 20 remaining positions were available for 

control rods (Kernkraftwerk Gösgen, 2010). The final rod-average burn-up was estimated as 50.4 

GWd/tHM for the fuel rod SBS1108, which had been achieved in four cycles of 1226 days total 

irradiation duration. A rim zone burn-up of 67.0 GWd/tHM and a maximal temperature during 

irradiation above 1300 °C was estimated based on the data of Table 1 (Kienzler et al., 2012). The 

average and maximal linear power was calculated as 260 and 340 W/cm, respectively.  

  



Metz et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides 

120 

Table 1: Characteristic data of 50.4 GWd/tHM fuel rod segment discharged from PWR Gösgen 

Data category Information 
category 

Parameter 

Reactor essential PWR Gösgen, Switzerland 

light water coolant 

Fuel assembly 
design information  

essential Lattice geometry: 15x15 
48 assemblies with 20 control rods per assembly 

External fuel rod diameter: 10.75  0.05 mm 

 Fuel rod # SBS 1108, Segment N 0204 

Fuel rod data  essential Test fuel rod  

Internal rod pre-pressure: 21.5  1 bar He 

Fuel material data essential UO2 fuel, initial enrichment 3.8% 235U, Unat, resp. 

O/U = 2.002; fuel fabrication without additives 

Pellet dimensions:  = 9.2 mm, height = 11 mm 

Calculated radionuclide inventory given in  
Grambow et al. (2000)   

Fuel density (as fabricated): 10.41 g/cm3 

supplemental Measured radionuclide inventory given in  
Grambow et al. (2000)   

Cladding data essential Zircaloy-4, DX ESL 0.8 
Wall thickness: 0.725 mm 
Initial radial gap fuel / cladding: <0.17 mm 

Irradiation data essential Calculated burn-up: 50.4 GWd/tHM 
Number of cycles: 4 
Average linear power: 260 W/cm 
Maximal linear power: 340 W/cm 

 Discharge: 27. May 1989 
Irradiation duration: 1226 days 

 

Comparison of selected 50.4 GWd/tHM PWR fuel to other HBU-SNF samples 

In a recent report regarding the characterisation of 13 spent nuclear fuel samples to be used in the 

FIRST-Nuclides project, it was shown that these HBU-SNF samples were irradiated at a wide range of 

operational conditions (Metz et al., 2012). The initial 235U enrichment versus the average discharge 

burn-up of the selected fuel rods are compared to average values for irradiated BWR and PWR fuel 

assemblies reported by the NEA (2006). As shown in Figure 3, most of the high burn-up fuels selected 

for investigations in the project FIRST-Nuclides are on or close to trend-lines for present high burn-up 

fuels. The data point of the PWR Gösgen fuel rod segment plots on the trend line of PWR fuel with  



1st AW Procee

4-batch-ref

and BWR 

the selected

up fuels wh

Figure 2: Sc

the total --r
inserted ima

 

Summary 

KIT-INE p

findings ca

of 13 HBU

to be dispo

are docum

characteriz

characteriz

edings - 7th EC

fuelling sch

fuels select

d 13 HBU-S

hich need to

chematic cro

rate and the a
age is taken fr

and Futur

provides a 

an be publis

U-SNF samp

osed of in E

mented in the

zation, gas 

zation, of 

C FP - FIRST-N

heme and is 

ed for studi

SNF sample

o be dispose

ss section of 

activities of 13

from Wegen e

re work 

spent nucl

shed withou

ples, consid

European re

e present co

sampling, 

the leachin

Nuclides 

characteriz

ies within F

es leads to t

ed of in Eur

f the Gösgen 5
37Cs and 60Co
t al. (2012a).

ear fuel rod

ut restriction

ered as repr

epositories. 

ommunicati

cutting and

ng behavio

121 

zed by a rela

FIRST-Nucl

the conclusi

ropean repo

50.4 GWd/tHM

o along the se
 

d segment 

ns The studi

resentative t

Data on the

ion. The fue

d sampling 

our, studie

atively low 

ides. At the

ion that the

ositories (Me

M fuel rod seg

egment. The 

in the own

ied 50.4 GW

to some ext

e fuel rod m

el rod segm

of fuel pel

ed in prev

burn-up com

e present sta

se samples 

etz et al., 20

gment and -
-scan was m

nership of K

Wd/tHM  PW

tent to high 

manufacturin

ment was tra

llets. Result

ious exper

mpared to t

ate, the char

are relevan

012).  

-scan of the s

measured by J

KIT, where

WR fuel belo

burn-up SN

ng and irrad

ansported to

lts of the n

rimental se

Metz e

the other PW

racterisation

t to high bu

 

segment show

JRC-ITU and 

e all data a

ongs to a gro

NF which ne

diation histo

o JRC-ITU 

non-destruct

eries, will 

et al. 

WR 

n of 

urn-

wing 

d the 

and 

oup 

eed 

ory 

for 

tive 

be 



Me

do

the

de

Fig
Nu
pro

 

Ac

Th

Na

de

fur

(O

Th

Ato

ag

etz et al. 

ocumented a

e FIRST-Nu

termine fas

gure 3: Initi
uclear Scienc
oject, are sho

cknowledge

he authors 

asyrow, Di

structive an

rther activit

ONDRAF-N

he research

omic Energ

greement n° 

and interpre

uclides proj

t / instant re

ial 235U enric
ce Committee
own as stars. 

ements 

would like

imitrios Pap

nalysis of th

ties related 

NIRAS) and 

h leading to

gy Commun

295722 (FI

eted to comp

ject, pellets

elease fracti

chment versu
e, 2006). Dat
The data poin

 to thank o

paioannou, 

he 50.4 GW

d to the cha

Lawrence J

o these resu

nity's (Eurat

IRST-Nuclid

plete the av

s of the fue

ion under re

us discharge 
ta of selected
nt of the 50.4

our colleag

Wim de 

Wd/tHM PW

aracterizatio

Johnson (NA

ults has re

tom) Sevent

des project)

122 

vailable data

el rod segm

educing con

e burn-ups av
d BWR and P
4 GWd/tHM PW

gues at JRC

Weerd and

WR fuel segm

on of the sa

AGRA) are

eceived fund

th Framewo

). 

1st AW

a-set for the

ment will be

nditions. 

veraged per 
PWR fuel rod
WR fuel is den

C-ITU, in p

d Detlef W

ment as we

amples. Th

e gratefully 

ding from 

ork Program

W Proceedings -

 studied fue

 used in lea

fuel assembl
ds, to be use
noted by an o

particular to

Wegen for 

ll as for cu

e reviews b

acknowledg

the Europe

mme FP7/2

- 7th EC FP - F

el rod segm

aching exp

lies (modifie
ed in the FIR
open star. 

o Ralf Gre

performing

utting the se

by Daniele

ged.  

ean Union's

2007-2011 u

FIRST-Nuclides

ment. Within

eriments to

 

ed after NEA
RST-Nuclides

etter, Ramil

g the non-

egment and

Boulanger

s European

under grant

s 

n 

o 

A 
s 

l 

-

d 

r 

n 

t 



1st AW Proceedings - 7th EC FP - FIRST-Nuclides  Metz et al. 

123 

References 

González-Robles, E., Bohnert, E., Loida, A., Müller, N., Lagos, M., Metz, V., Kienzler, B. (2012) 

Fission gas measurements and description of leaching experiments with of KIT’s irradiated PWR fuel 

rod segment (50.4 GWd/tHM). 7th EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings 

(Budapest, Hungary). 

Grambow, B., Loida, A., Martínez-Esparza, A., Díaz-Arocas, P., de Pablo, J., Paul, J.-L., Marx, G., 

Glatz, J.-P., Lemmens, K., Ollila, K., and Christensen, H. (2000) Long-term safety of radioactive 

waste disposal: source term for performance assessment of spent fuel as a waste form. Final report. 

Source term for performance assesment of spent fuel as a waste form. European Commission, Nuclear 

Science and Technology Series. Forschungszentrum Karlsruhe Wissenschaftliche Berichte, FZKA 

6420. 

Kernkraftwerk Gösgen (2010) Technik und Betrieb – Technische Hauptdaten. Kernkraftwerk Gösgen-

Däniken AG, Däniken (Solothurn, Switzerland). 

Kienzler, B., Bube, C., González-Robles, E., Metz, V. (2012) Modelling of boundary conditions for 

upscaling migration / retention processes of fission products in the spent nuclear fuel structure. 7th EC 

FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 

Kutty, T.R.G., Hegde, P.V., Khan, K.B., Jarvis, T., Sengupta, A.K., Majumdar, S., Kamath, H.S. 

(2004) Characterization and densification studies on ThO2–UO2 pellets derived from ThO2 and U3O8 

powders. Journal of Nuclear Materials, 335, 462-470. 

Metz, V., Bohnert, E., Bube, C., González-Robles, E., Kienzler, B., Loida, A., Müller, N., Carbol, P., 

Glatz, J. P., Nasyrow, R., Papaioannou, D., Rondinella, V. V., Serrano Purroy, D., Wegen, D., 

Curtius, H., Klinkenberg, H., Günther-Leopold, I., Cachoir, C., Lemmens, K., Mennecart, T., 

Vandenborre, J., Casas, I., Clarens, F., de Pablo, J., Sureda Pastor, R., Hózer, Z., Slonszki, E., 

Ekeroth, E., Roth, O. (2012) Fast / Instant Release of Safety Relevant Radionuclides from Spent 

Nuclear Fuel (FIRST-Nuclides): Characterisation of spent nuclear fuel samples to be used in FIRST-

Nuclides – relevance of samples for the Safety Case. Deliverable No 1.1. European Commission, 

Brussels. 

NEA (2006) Very High Burn-ups in Light Water Reactors. OECD Nuclear Energy Agency, NEA 

publication no. 6224, ISBN 92-64-02303-8. 

Stratton, R.W., Botta, F., Hofer, R., Ledergerber, G., Ingold, F., Ott, C., Reindl, J., Zwicky, H.U., 

Bodmer, R., Schlemmer, F. (1991) A comparative irradiation test of UO2 sphere-pac and pellet fuel in 



Metz et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides 

124 

the Goesgen PWR. International Topical Meeting on LWR Fuel Performance “Fuel for the 

90’s”(Avignon, France), p. 174-83. 

Wegen, D.H., Papaioannou, D., Nasyrow, R., Rondinella, V.V., Glatz, J.P. (2012a) Non-destructive 

analysis of a PWR fuel segment with a burn-up of 50.4 GWd/tHM – Part I: Visual examination and -

scanning. 7th EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 

Wegen, D.H., Papaioannou, D., Nasyrow, R., Rondinella, V.V., Glatz, J.P. (2012b) Non-destructive 

analysis of a PWR fuel segment with a burn-up of 50.4 GWd/tHM – Part II: Defect determination. 7th 

EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 

Wegen, D.H., Papaioannou, D., Gretter, R., Nasyrow, R., Rondinella, V.V., Glatz, J.P. (2012c) 

Preparation of samples for IRF investigations and Post Irradiation examinations from 50.4 GWd/tHM 

PWR fuel. 7th EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 

 



 

 

MODELLING OF SPENT FUEL SATURATION WITH WATER – APPROACH, 
PRELIMINARY RESULTS AND POTENTIAL IMPLICATIONS 

Marek Pękala*, Andrés Idiart , Lara Duro, Olga Riba 

Amphos 21 Consulting S.L. (AMPHOS21), ES 

* Corresponding author: marek.pekala@amphos21.com 

 

Introduction 

Disposal in a deep underground repository is currently considered by several countries as the preferred 

option for the long-term management of spent nuclear fuel (SNF). For regulatory reasons the safety of 

such a disposal facility must be demonstrated quantitatively through Performance Assessment (PA) 

calculations. One of the factors that have the potential to significantly influence the results of PA is the 

radionuclide release rate from the waste upon contact with groundwater. In current PA calculations the 

radionuclide release from the SNF is typically represented by a two-stage process: (i) an instantaneous 

release of a fraction of the inventory immediately upon contact with water (the instant release fraction 

– IRF), followed by (ii) a relatively slow release rate of the inventory confined in the SNF matrix over 

a long period of time. PA calculations indicate that instant release is important for the overall safety 

assessment of the facility, but there are significant uncertainties about the nature of this phenomenon 

and how it should be represented in PA. The First Nuclides project has been initiated with the aim to 

provide better, both conceptual and quantitative, understanding of the processes involved in the instant 

release of radionuclides from SNF. 

In the context of IRF, the knowledge of the rate of SNF saturation with water is key as the release of 

some radionuclides is conditioned upon wetting of the grain surfaces of the fuel by water. Therefore, 

the instant release rate of these radionuclides depends, among others, on the rate of SNF saturation 

with water. An improved understanding of the rate of saturation with water will help to elucidate 

radionuclide instant release both under repository conditions and with regard to laboratory experiments 

conducted on the SNF under near-room conditions. 
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Conceptual Approach 

Background and Motivation 

Under repository conditions water saturation of the SNF would be contingent upon breaching of the 

surrounding cladding, which provides a water-tight barrier. This could happen as a result of a number 

of physico-chemical processes (Rothman, 1984; Pescatore et al., 1989). Depending on the gas pressure 

within the intact fuel rod, a local failure (e.g. a pin-hole or a small crack) of the cladding under fully 

saturated conditions in the near-field could allow water ingress into the rod (if the hydrostatic pressure 

is higher than the gas pressure in the rod) until the gas pressure within the rod established equilibrium 

with the hydrostatic pressure. The amount of water flowing into the rod (and therefore the SNF portion 

directly exposed to water) would depend on the initial gas pressure in the rod and on the hydrostatic 

pressure (which under fully saturated conditions is a function of the repository depth). Should the 

initial gas pressure be above the hydrostatic pressure, after the excess gas has escaped the rod, direct 

water inflow into the rod would be prevented due to pressure equilibration between the inside and 

outside of the rod. From a conceptual viewpoint, modelling of SNF water saturation under the above-

described scenarios would require a dual-phase (coupled water-gas flow) approach, where the two 

partial differential equations (PDE) describing the flow of the two phases are coupled and solved 

simultaneously. Such an approach poses a significant computational challenge, therefore as a first 

attempt a simplifying assumption was made according to which the cladding had undergone extensive 

damage allowing all gas contained within the fuel rod to escape. This approach eliminates the need to 

account for the coupled behaviour of the gas in the system. Consequently, a computationally simpler 

approach for unsaturated water flow described by the Richards equation could be used, which relies on 

the assumption that gas has sufficiently low viscosity to allow it to move (as it is replaced by water) 

without significant pressure build-up (Pinder and Celia, 2006). Therefore, in this approach it is 

assumed that there is no gas pressure gradient. This model represents therefore a worst-case scenario, 

whereby groundwater can contact the entire external surface of the SNF pellet stack within the rod. It 

is further assumed, that the process of water saturation of the entire SNF pellet stack can be adequately 

approximated by the saturation of a single pellet. Therefore, the calculation results represent the 

saturation with water of a single SNF pellet. This approach has the additional benefit that it resembles 

saturation of a single uncladded SNF pellet under laboratory conditions (if account is taken of the 

appropriately lower boundary water pressure values, which are near atmospheric). Hence, the results of 

these calculations may be useful in elucidating the results of radionuclide release rate studies 

conducted under laboratory conditions. 
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The crack characteristics of the Reference Pellet were defined based on literature relating mean pellet 

crack aperture (20 µm) and crack pattern (regularly distributed cracks: 3 axial, 3 radial and 1 

circumferential) with power applied to rod in the reactor (Oguma, 1983; Williford, 1984). Thereafter, 

the saturation with water of these cracks was modelled as saturation of a network of discrete cracks. It 

was further assumed that the pellet is at room temperature, therefore no heat transfer or high 

temperature effects are accounted for. 

In addition to the Reference Pellet calculations (water saturating major cracks), another set of 

calculations was carried out to test the influence of sub-micrometre scale cracks (present within sectors 

of the pellet bounded by the major cracks). 1D calculations over a reference distance of 1 mm were 

performed assuming an arbitrarily small (due to lack of reliable data) mean fracture aperture of 0.1 µm 

and employing the concept of porous-equivalent medium (which assumes that the cracks are 

sufficiently small and well-connected so as to be adequately approximated by a porous medium). Also 

the interconnected voidage for these calculations was assumed to be 0.1 (where by voidage is meant 

the ratio of volume of void space within the pellet and the total volume of the pellet). 

The rationale for splitting the calculations into two separate models of different scales was based on 

the expected distinct time-scales required for the saturation of the major and small crack systems 

(which was expected to be much faster in case of the larger cracks). 

 

Mathematical Description of Saturation with Water 

The modelled process is variably-saturated flow of water in cracks. The simplest mathematical model 

for such a problem is based on the Richards equation (Bear and Cheng, 2010), which constitutes an 

extension of the empirical Darcy’s Law to unsaturated conditions. Although originally developed to 

model variably-saturated flow in soils, the Richards approach has been further extended to other 

porous and fractured materials (Finsterle, 2000; Liu and Bodvarsson, 2001). The Richards equation is 

a PDE that can be solved for water (moisture) pressure (or equivalently for water content) as a function 

of time and space. The solution of the Richards equation must however be conducted simultaneously 

with a coupled set of constitutive algebraic equations describing water retention and relative 

permeability properties of the medium. In this study the commonly used van Genuchten model (van 

Genuchten, 1980) is used in conjunction with the Richards flow equation. In the model, the 

dependence of permeability on the degree of water saturation results in significant non-linearity, 

especially at low water content (dry) conditions, which may render the problem numerically difficult 

(instability and convergence problems – Forsyth et al., 1995). 
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Parameterisation of the Model 

Two parameters (n and α) are required for the van Genuchten model. These are typically derived from 

laboratory water saturation experiments. However, to the authors’ knowledge, this data is not available 

for SNF. Therefore, retention curves for the pellet were estimated based on a model derived from 

statistical considerations of the cracks apertures (Fredlund and Xing, 1994; Zhang and Fredlund, 

2003). The retention curve was calculated assuming a mean value of crack aperture (20 µm for the 

Reference Pellet calculations and 0.1 µm for the small-scale cracks calculations), a relative standard 

deviation of the apertures (50% and 100%) and assuming that the crack apertures follow a log-normal 

distribution. No data is available on the relative standard deviations for SNF crack apertures, therefore 

intermediate values from the study of Keller (1997) on fracture statistics from rock cores were used as 

first approximations. The van Genuchten parameters were then fitted to the retention curves by means 

of non-linear optimisation. The interconnected voidage in the Reference Pellet (volume of fractures 

over bulk volume, 0.02) was estimated from the assumed mean fracture aperture and the fracture 

geometry. In the case of the small-scale cracks calculations, an arbitrary value of 0.1 was assumed for 

their porosity. The saturated permeability was estimated according to the cubic law, which relates the 

permeability with the cube of the aperture (Marsily, 1986). Zero compressibility for the fractures was 

assumed. The residual water content was also assumed to be zero. 

 

Numerical Implementation 

The model was implemented in the finite element code Comsol Multiphysics using the Fracture Flow 

Interface (for the Reference Pellet) and the Richards Interface (for the sub-micrometre scale crack 

apertures – porous-equivalent approach). The Fracture Flow Interface was modified by manually 

implementing a storage-retention term and the van Genuchten constitutive equations so as to account 

for variably-saturated flow within the fractures. The pressure is the state variable of the model. The 

finite element mesh (consisting of 10,500 triangular elements) used in calculations for the Reference 

Pellet is shown in Figure 2. Mesh-independence of the solution was verified by running select 

calculations with a refined mesh of 50,000 elements. In the case of sub-micrometre cracks, 

calculations were carried out using 1D geometry over a reference distance of 1 mm discretised by 1000 

elements, and with the cracks represented as an effective porous medium (Richards Interface). 

MUMPS direct solver was used to solve the set of linear algebraic equations resulting from problem 

discretisation, while the solution was progressed in time using the BDF solver. Linear finite elements 

were used and gravity effects were ignored. 



Pęk

Fig

 

Ca

Bo

Th

(co

am

hy

wa

Ini

Th

we

co

kala et al. 

gure 2: The f

alculation C

oundary Con

he prelimin

orrespondin

mbient cond

ydrostatic pr

as applied to

itial Condit

he initially d

ere tested: 

rresponding

finite element

Cases and R

nditions 

nary calcu

ng to 5 cm

ditions (i. e

ressures at 

o all externa

tions 

dry conditio

1‰ and 0.

g to about 1

t mesh of the R

Results 

ulation eff

m water colu

e. water sa

repository d

al crack bou

ons in the pe

.1‰. An ex

‰ water sa

Reference Pe

forts presen

umn), whic

aturation of

depth (e.g. 

undaries, as

ellet were re

xample of 

aturation is s

130 

ellet. Dimensi

nted below

ch may be 

f an uncla

400-500 m

s shown in F

epresented 

the initial 

shown in F

1st AW

ions are in m

w focused

thought of

dded pellet

m). The bou

Figure 3. 

by a low w

and bounda

igure 3. 

W Proceedings -

 

illimetres. 

d on low 

f as repres

t in a beak

ndary press

ater saturati

ary state of

- 7th EC FP - F

boundary

entative of

ker), in co

sure (consta

tion degree;

f the Refer

FIRST-Nuclides

pressures

f laboratory

ontrast with

ant in time)

two values

rence Pellet

s 

s 

y 

h 

) 

s 

t 



1st AW Procee

Figure 3: E
Colours rep
cm water c
corresponds

 

Calculatio

Two calcul

of intercon

cracks (Ca

and Case 2

 

Table 1: Pr
fracture ape
retention, In
corresponds

 

edings - 7th EC

Example of th
present degree
column) is ap
s to just below

n Cases 

lation cases

nnected disc

ase 2). Preli

2 calculation

reliminary re
erture 20 µm
nitial S – init
s to a 5 cm wa

C FP - FIRST-N

he initial and
e of saturatio
pplied the ex
w 1‰ water s

s were consi

crete fractur

iminary resu

ns, respectiv

esults for Cas
m). RSD – re
tial degree of
ater column (

RSD (%) 

50 

100 

Nuclides 

d boundary c
on with water
xternal edges
saturation. Pe

idered: (Ta

res (Case 1)

ults of these

vely. 

se 1: approx
elative Standa
f water satura
(near atmosph

131 

conditions app
r (fraction of

es of cracks 
ellet dimensio

able 1) satur

), and (Tab

e calculatio

imate time to
ard Deviatio

ration of the f
heric conditio

Initial S = 

1 second

1 minute

plied to the R
f unity). Boun
(full water s

ons are in mi

ration of the

le 2) satura

ons are show

o full water s
on of fracture
fracture syste
ons). 

1‰  

d 

e 

Reference Pe
ndary water p
saturation). 
llimetres. 

e Reference 

ation of a ne

wn in Table

saturation in
e aperture as
em (initial co

Initial S =

1 min

2 hou

 

ellet in a typ
pressure (cor
The initial s

e Pellet thro

etwork of su

es 1 and 2 

n the Referen
ssumed in ca
ondition). Bo

= 0.1‰ 

nute 

ur 

Pękala e

ical calculati
rresponding t
suction press

ugh a netwo

ub-microme

for the Cas

nce Pellet (m
alculating wa
undary press

et al. 

ion. 
to 5 
sure 

ork 

etre 

e 1 

ean 
ater 
sure 



Pękala et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides 

132 

Table 2: Preliminary results for Case 2: approximate time to full water saturation of the sub-micrometre scale 
fractures (mean aperture 0.1 µm) over a distance of 1 mm. RSD – relative Standard Deviation of fracture aperture 
assumed in calculating water retention curve, Initial S – initial degree of water saturation of the fracture system 
(initial condition). Boundary pressure corresponds to a 5 cm water column (near atmospheric conditions). 

RSD (%) Initial S = 1‰ Initial S = 0.1‰ 

50 5 second 1 minute 

100 2 hour 1 year 

 

Discussion 

Main Uncertainties in the Model 

The results presented are preliminary and are underpinned by a number of important assumptions, 

which in the absence of literature or experimental data had to be made. Therefore, the water saturation 

times presented should be regarded with a degree of caution. 

On a conceptual level, although the proposed approach has been applied to variably-saturated flow in 

fractured rocks (Finsterle, 2000; Liu and Bodvarsson, 2001), there exists some concern as to the 

validity of applying retention parameters derived from bulk scale properties to flow within individual, 

discrete cracks. This could be particularly the case if the extent of cracks is large relative to the 

modelled domain (the pellet). To circumvent this problem it is argued that retention properties of the 

pellet result predominantly from variation of crack apertures on a microscopic scale within individual 

cracks (rather than from the presence of cracks characterised by different, but relatively constant, 

apertures).  

Considerable uncertainty exists regarding the parameterisation of the model. In particular, as the water 

retention curve of the pellet has not been determined experimentally and had to be approximated using 

geometric considerations, the resulting van Genuchten fitting parameters depend crucially on the crack 

network statistics. This information however is scarce and, to a large extent, had to be assumed. Two 

crack parameters are of special importance: the mean aperture and the standard deviation of the 

apertures. The latter parameter is especially important for the performance of the model (the calculated 

water saturation time) as can be seen from the results shown in Tables 1 and 2. Moreover, the initial 

degree of dryness (which defines the initial suction pressure in the crack network) has an important 

impact on the calculated time to full saturation with water. For example, if the initial degree of water 

saturation was much lower, the calculated saturation times would increase. 
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Potential Implications 

Due to the presence of cracks in the pellet of distinctly different apertures we expect that the water 

saturation of the SNF pellet will proceed in two stages. First the larger cracks will be saturated 

relatively quickly (possibly in a matter of minutes to hours) followed by saturation with water of the 

smaller (sub-micrometre) cracks, which may be a much longer process (operating over a time scale of 

many days to months). If any additional voids (aside cracks) were thought to participate in the 

saturation process (such as grain boundaries) this would make the saturation time significantly longer 

(perhaps on the scale of many years) depending on their hydraulic properties. Such a two-stage water 

saturation regime could have implications for the interpretation of SNF leaching experiments. In such 

experiments it has been observed that radionuclide release proceeds in two distinct phases: (i) a rapid 

release phase (over a period of minutes and hours) followed by (ii) an extended period of radionuclide 

release at a much slower rate (over periods of at least several hundreds of days – e.g. González-Robles 

(2011)). This pattern has been explained by distinct fuel dissolution rates operating during the two 

phases (González-Robles, 2011). However, the two-stage water saturation process described above 

could also exert a similar effect on the radionuclide release rate. The two mechanisms (dissolution and 

surface wetting) could be complementary. This hypothesis will be studied in more detail with the 

model developed in this work. 

 

Conclusions and Future Work 

Conclusions 

A preliminary model for simulating the saturation with water of a single SF pellet has been proposed 

and tested. The pellet was conceptualised to be composed of a completely impervious matrix (with no 

interconnected porosity) cross-cut by a network of interconnected fractures. The fractures are idealised 

to belong to two separate populations differing in their mean aperture (20 µm and 0.1 µm). Saturation 

with water proceeds through the cracks network due to water pressure gradient. The Richards approach 

to modelling variably-saturated flow within the crack was employed and the model was implemented 

in Comsol Multiphysics. Although considerable uncertainties remain regarding the parameterisation of 

the model (particularly with respect to the water retention properties of the pellet) preliminary results 

indicate that (under near atmospheric conditions) the larger cracks would saturate relatively quickly 

(within hours at most), while the smaller cracks may take much longer to become fully saturated 

(months to years). This may have implications for the interpretation of laboratory SNF leaching 

experiments on radionuclide release.  
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On-going and Future Work 

This work is under active development. It is expected that the uncertainties currently present in the 

model and affecting the results will be reduced as more experimental data becomes available. Using 

the current approach it is straightforward to include the effect of presence of partial cladding on the SF 

pellet (by adjusting the boundary conditions) as may be the case in some laboratory experiments. 

Similarly, extrapolation to repository conditions (of the water saturation of a single uncladded pellet) 

would pose no significant difficulty. An extension of the model to include the entire rod under 

repository conditions is possible but would cause a significant increase in the complexity of the model 

(dual-phase coupled flow of gas and water).  

An alternative and more detailed approach to modelling variably-saturated flow in cracks could be 

based on the work of Or and Tuller (2000) who developed a model for surface liquid retention on 

rough fracture surfaces due to adsorptive and capillary forces. This approach however would require 

detailed knowledge on the crack surface geometry. Such information could be obtained, for example, 

by means of X-Ray Computer Tomography (CT). 
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Abstract 

This paper describes the selection of six high burn-up SNF samples for leaching experiments and laser 

ablation studies and the preparations made for the start of the experiments as well as the start-up of two 

leaching experiments and laser ablation studies.  

The main focus of the investigations is to explore the effects of additives and dopants on the 

fast/instant release of fission products such as Cs and I. Experiments will also be performed to 

investigate the feasibility of measuring fast/instant release of Se and 14C. 

Furthermore, laser ablation experiments will be performed to study the radial distribution of I, Xe and 

Cs and to explore any correlation to the fission gas release (FGR) and instant release leach rates of the 

corresponding fuel samples. 

 

Introduction 

This paper describes ongoing efforts at Studsvik Nuclear AB within the EURATOM FP7 

Collaborative Project ”Fast / Instant Release of Safety Relevant Radionuclides from Spent Nuclear 

Fuel (CP FIRST-Nuclides)”. 

The aim with the project is to study the fraction of fission and activation products that is fast/instantly 

released from spent nuclear fuel upon contact with aqueous media. The fraction consists of readily 

soluble phases in the gap between fuel and cladding, cracks and grain boundaries. Some of these 

fission and activation products have a long half-life and are for this reason important for the safety 

assessment of deep repositories for spent nuclear fuel.  

At the Studsvik Hot Cell laboratory, spent fuel leaching studies have been conducted since around 

1980. During 1990-1996 a comprehensive research program was initiated aiming at mapping the most 
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important parameters influencing the stability of spent nuclear fuel in water (Forsyth, 1997). Since 

then the program has been extended with leaching experiments of high burn-up fuel and instant release 

experiments (Johnson et al., 2011; Zwicky et al., 2011).  

In these previous experiments, standard UO2 fuel has been used. Today new fuel types with additives 

and dopants are taken into use in commercial reactors. The additives and dopants effects properties 

such as grain size and fission gas release which in turn may affect the instant release behavior of the 

fuel. The main objective of this study is to investigate how these changes in the fuel matrix affect the 

instant release process.  

 

Sample selection and preparation 

The main focus of the investigation is to explore the effects of additives and dopants on the fast/instant 

release of fission products such as Cs and I. For this reason six high burn-up fuels were chosen for the 

studies. The selected fuels are listed in Table 1.  

Table 1: Fuels selected for investigation at Studsvik 

Sample name Reactor type Fuel type FGR  

[%] 

Calculated BU 
(rod average) 
[MWd/kgU] 

D07 BWR Std UO2 ~1.6  50.2 

L04 BWR Std UO2 ~3.1 54.8 

5A2 BWR Std UO2 ~2.4 57.1 

C1 BWR Al/Cr doped UO2 ~1.4 59.1 

VG81 PWR Gd doped UO2 ~2.2 54.4 

AM2K12 PWR Std UO2 ~4.9 70.2 

 

The fuels have previously been characterized by measuring the fission gas release (FGR). The method 

for FGR measurements is described in section 1.1. The calculated burn-up (average) for the rods are 

provided from the core calculations of the power stations that irradiated the rods. All samples will 

undergo gamma scanning (either gross gamma scan or digital gamma scan) before experimental start-

up. The method for this is described in section 1.2.  
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Method for analysis of fission gas release 1.1 

The fission gas release was measured by puncturing the rods at the plenum, collecting the internal gas 

in a standard volume and determining the pressure. Samples of the gas were collected and analysed by 

mass spectrometry.  

The total internal free volume of the rod was determined by the backfill method, using argon at 

constant pressure. The amount of released gas was calculated from the puncturing pressure and the 

volume of the puncturing system and from the gas composition. 

Using the UO2 content of the rod, the average burn-up of the rod and fission yields of Xe and Kr 

(interpolated from standard calculations with the Origen code) the amount of generated fission gas can 

be determined.  

The fission gas release (i.e. fraction of released gas relative to generated gas) was obtained from the 

measured amount of released Xe and Kr isotopes, and the predicted amount of generated Xe and Kr. 

 

Method for gamma scanning 1.2 

Gamma scanning is performed by moving the sample past a Ge detector with a 0.5 mm collimator. The 

signal from the detector can be recorded in analog or digital mode. Analog recording of the signal 

gives the total energy detected as a function of the axial position on the rod i.e. the gross gamma 

spectrum. Digital recording records the energy from each nuclide separately and a spectrum for each 

nuclide is given.   

The gamma spectra gives information on the positions of pellet-pellet interfaces as well as the burn-up 

profile. By scanning a reference sample with known burn-up in sequence with the sample, the local 

burn-up of the sample can be calculated from the digitally recorded 137Cs signal. 

 

Spent fuel leaching studies 

Sample preparation 2.1 

Spent fuel leaching studies are performed using samples from 6 different fuel rods. Before the start of 

the leaching experiment each fuel segment is gamma scanned to identify pellet-pellet interfaces, 

thereafter samples are cut from the segment. The samples are cut at mid-pellet positions as shown in 

Figure 1.  Each sample consists of approximately 2 fuel pellets including cladding.  
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As mentioned above, leaching of powdered specimens will be performed using a simultaneous 

grinding and leaching technique described by (Stroes-Gascoyne et al., 1995). 

For this purpose a rotary pestle and mortal mill will be used. Using this mill, powders with a final 

grain size of 10-20 µm should be achieved. Approximately 1 g of fuel will be grinded and 

simultaneously leached in 100 ml leaching solution (10 mM NaCl + 2 mM NaHCO3).  

Before the start of the combined leaching and grinding experiment the grinding method will be tested 

by grinding fuel in different time intervals and evaluate the achieved grain size by sieving and SEM 

analysis.    

The cladding from the powdered fuel sample will be leached separately using the same experimental 

set up as for fuel fragments + separated cladding with contact periods 1 day and 7 days. 

All aqueous samples from the leaching studies are removed from the hot cell and transported to the 

chemistry laboratory where the samples are centrifuged (and filtered if necessary in the case of 

powdered samples) and analysed for Cs and I with ICP-MS. 

A method for analysis of Se and 14C will be tested. Se analysis will be performed using hydride 

generation ICP-MS. If convincing Se isotopic ratios consistent with a fissiogenic origin are obtained, 

efforts to determine the Se speciation in the leaching solution will also be made (by control of the Se 

redox state and hydride generation or by chromatography). Preliminary results on the first leaching 

samples analysed by ICP-MS indicate fissiogenic 82Se levels close to the detection limit (without 

modifications for specific analysis of Se). Analysis of 14C will be performed using a method with 

liquid scintillation. 

 

Laser ablation  

Laser ablation will be used to study the radial distribution of I, Xe and Cs. Taking the circular 

geometry of the fuel cross section into account the average fuel content can also be obtained from the 

data. The results will be used to investigate any correlation to the FGR, and to the instant release rates 

of the corresponding fuel samples. The samples to be studied are cross sections (transversal cut, 

perpendicular to the axial direction of the rod) from a standard UO2 fuel and an Al/Cr-additive fuel 

(5A2 and C1 in Table 1). The sample preparation is underway with the laser ablation cross sections to 

be analysed taken at mid pellet position from a neighbour pellet to the fuel sample for the leaching 

investigation. 
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Abstract 

A summary of the work to be carried out at ITU in the frame of WP3 by ITU and CTM as well as an 

updated work program are reported. In addition some effort was dedicated to the development of an 

improved method of ICPMS Sr determination and preliminary results are also reported. The study of 

Sr, although being a short-living radionuclide and therefore not important for IRF, is an aspect of 

special interest due to some contradictory literature findings. Although it has been traditionally 

considered as matrix release indicator recent experimental work carried out at ITU has shown that Sr 

dissolves faster than the matrix. In order to clarify this statement a more precise evaluation method is 

being developed in the frame of this project. Similar methodologies will also be applied for other 

radionuclides of interest like Se. 

 

Dissolution based fast radionuclide release 

In the following months several corrosion experiments will be carried out at ITU by dedicated ITU and 

CTM personnel. The aim of these experiments is the determination of the IRF of commercial spent 

UO2 nuclear fuels. Different samples will be used, see WP1, and the experiments will be carried out 

using cladded segments and two different powder fuel  fractions: one prepared from the centre of the 

pellet (CORE) and another one from the fuel pellet periphery (OUT), enriched with the so-called High 

Burn-Up Structure (HBS). 
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1. Experimental set-up 

1.1. Powder samples 

Approximately 0.25 g of SNF powder will be placed in in 50 ml borosilicate glass test tubes of 

(150 x 25) mm with plastic screw cap (Schütt Labortechnik GmbH, Göttingen, Germany) with 50 ml 

of the selected leaching solution. The tubes will be placed on a rotator stirrer to avoid concentration 

gradients. The rotator stirrer is made in polymethacrylate over a stainless steel framework, using an 

electrical motor with a nominal speed of 30 rpm; enough to ensure that the SNF is kept in suspension 

and to assure a perfect contact with the solution. 

The experiments will be performed in air equilibrated solutions. To minimize the possibility of 

uranium saturation and secondary phase formation the solution will be completely replenished after 

each sampling. All aliquots taken will be acidified with 1M HNO3 and measured by a sector field ICP-

MS (Inductively Coupled Plasma Mass Spectrometry) (Thermo Element2, Thermo Electron 

Corporation, Germany). If other measuring methodologies, for example for iodine or selenium, are 

developed during the course of the project, they will also be applied.  

The pH, Eh and temperature will be measured at given intervals with an Orion 525A+ pH-meter and a 

gel pH Triode L/M, (9107BN, Thermo-Electron, USA) and platinum Redox electrodes, (97-78-00, 

Thermo-Electron, USA). The pH electrode will be calibrated with commercial pH buffer solutions 

(METLER TOLEDO Inc., USA; pH 4.01 (Ref. 501307069), pH 7.00 (Ref.51302047), pH 9.21 

(Ref. 51302070)). Commercial pH 7.00 buffer solution will be used to calibrate the redox electrode. 

 

1.2. Cladded segments 

Samples of approximately 2 mm of cladded segment will be placed in a (50 ± 1) ml flask with 50 ml of 

the selected leaching solution in equilibrium with air leaving a head space gas of about 10 ml. The 

solution will be shaken daily to avoid the build up of concentration gradients in the liquid phase. 

Samples will be hanged in a Pt wire in order to facilitate de sampling. Again, solution will be 

completely replenished after each sampling. 

Sampling treatment will be the same as the one explained in section 1.1.1. 

 

1.3.  Leaching solution 

The selected leaching solution will be 19 mM NaCl + 1.0  mM NaHCO3. 
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1.4.  Solution analysis results 

The total released or cumulative moles in solution for element i, mols(i), will be calculated considering 

the total amount of radionuclide removed in each sampling (Equation 1): 

   i)(n,mols )(mols ∑  sample

n
i

0


 eq. 1 

where molssample (n,i) correspond to the moles in solution before each complete replenishment n (mols). 

The Fraction of Inventory of an element i released in the Aqueous Phase (FIAPi) will be given by 

Eq. 2. 

iSNF

aqi

SNFi,

aqi,
i H m

V c

m

m
FIAP ==

   eq. 2 

where mi,aq is the mass of element i in the aqueous phase (g), mi,SNF the mass of element i in the SNF 

sample (g), mSNF the mass of SNF used in the experiment (g), Hi corresponds to the fraction of 

inventory for the nuclide i (g/g), ci is the concentration of element i in solution (gi/ml) and Vaq is the 

volume of solution (ml). 

The Fractional Release Rate for an element i (FRRi) in d-1 will be given by Eq. 3: 

t

FIAP
FRR i

i 



   eq. 3 

where t is the time (d). 

The Fractional Release for an element i Normalised to the total Surface area (FNSi) will be: 

S

FIAP
FNS i

i 
   eq. 4 

where S is the total surface area (m2). 

 

And the Fractional Release Normalised to Uranium for an element i (FNUi) is given by Eq. 5. 

U

i
i FIAP

FIAP
FNU 

   eq. 5 

where FIAPi and FIAPU are the FIAP of element i and Uranium, respectively. 
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Method development for quantitative analysis 

2.  Determination of  90Sr at ultratrace levels using the TRUFAST system and ICPMS detection 

The method utilizes an automated on-line system (see Figure 1) for the determination of 90Sr at 

ultratrace levels in natural samples by ICPMS. The TRUFAST system uses two high purity valves to 

take up an aliquot of sample, retain and concentrate Sr removing the matrix on a PFA column packed 

with Sr®-Spec resin. The pre-conconcentrated Sr is eluted by backpressure into a PFA nebulizer 

attached to the ICPMS spray chamber.  
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Figure 1: System diagram for the determination of 90Sr by preconcentration and matrix removal 

 

2.1.  Results  

In Figure 2 the elution profiles obtained for solutions 4 mol/L HNO3 containing 10, 25, 50 and  

100 pg/g of  90Sr are reported. As can be seen, 90Sr is eluted in a total time of 120 s.  

A calibration curve was obtaining by using the peak area of 90Sr versus the total 90Sr concentration. 

Linear regression was calculated using the Least squares linear regression method. The calibration 

curve is also shown in Figure 2.  A fit for purpose curve is obtained which does not introduce an extra 

uncertainty component. The method shows potential for the determination of 90Sr in natural samples in 

this concentration range. 

The detection limit of 90Sr was calculated by means of repeated measurements of the blank and 

according to Currie (Currie, 1968). The detection limit is 1.6 pg/g, taking into account that the 
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injection volume is 250 µl that represents an absolute amount of 0.25 pg (5 Bq) of 90Sr. The precision 

of the method, based on the relative standard deviation of the peak area calculated on the basis of three 

repetitions is always less than 2% in this concentration range. 

However, the detection limit, accuracy and precision of 90Sr determination by ICPMS are mainly 

affected by the occurrence of isobaric atomic and molecular ions at m/z = 90 (see Table 1). Moreover, 

the peak tailing of the highly abundant 88Sr isotope, the concentration of natural strontium in the 

sample is usually in the low µg/g  range, will also disturbs the 90Sr determination.  

 

 

Figure 2: Elution Chromatograms of solutions containing 10, 25, 50 and 100 pg/g of 90Sr 

 

Table 1: Possible interferences for 90Sr and required mass resolution 

Nuclide Molecular ions Required mass resolution (m/Δm) 
90Sr 180W2

+ 1370 
 180Hf2

+ 1372 
 58Ni16O2

+ 2315 
 74Ge16O+ 10765 
 52Cr38Ar+ 19987 
 50V40Ar+ 49894 
 54Fe36Ar+ 155548 
 50Ti40Ar+ 158287 
 90Zr+ 29877 
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Artificial ground waters samples adjusted to 4 mol/L HNO3 were prepared and analysed in order to 

determine the impact of possible interferences in the m/z 90 due to the presence in the water of the 

elements described in Table 1. Two series of samples were prepared with and without natural 

strontium, in order to study both the interferences formation and the peak tailing of 88Sr on m/z 90. The 

concentration of natural strontium in the artificial ground water samples used was between 2 to  

6 ng/g. However, concentrations up to 150 ng/g are possible in natural waters. Figure 3 shows that the 

peak tailing of the 88Sr isotope is not disturbing the peak area of 90Sr when the concentration of Sr is 

around 5 ng/g.  

 

 

Figure 3: Elution Chromatograms of artificial ground waters with a concentration of 5 ng/g of natural strontium 

Further studies are ongoing to determine the lowest natural Sr concentration that increases the 

background signal in the peak area of 90Sr. Operating the ICPMS in medium resolution could remove 

the peak tailing of 88Sr on the m/z 90, reducing, however sensitivity and increasing the detection limits 

of  90Sr. 

 

2.2.  Conclusions 

The TRUFAST system offers easy and efficient determination of low pg/g levels of 90Sr in natural 

water. Moreover, with its automated and versatile sample uptake and introduction capabilities, reduces 

sample preparation time while achieving good detection limits. 
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Applicability of the TRUFAST system for the analysis of leachates of spent fuel in ground water has 

been preliminary studied. In Table 2 are summarized the total inventory of Sr isotopes in a UO2 fuel.  

With a burn-up of 40 GWd/tHM irradiated in a PWR with 4 cycles of 1 year and a cooling time of 4 

years. In addition, the concentrations of some elements affecting the quantitative determination of  90Sr 

and the theoretical concentration of Sr released in ground water using the IRF of Cera et al. (2000) are 

also shown. 

 

Table 2: Spent fuel total theoretical inventory and Sr concentrations released using IRF estimates3 for strontium and 
potential interfering elements 

Nuclide µg/g fuel1 
fuel dissolution2 

µg/g 
% released 3 µg/g in leachates 

90Sr 147.5 2.95 3 0.0885 
88Sr 102.5 2.05 3 0.0615 
90Zr 23.5 0.47   
90Y 0.0375 7.5E-04   

74Ge 0.015 3.0E-04   
89Sr 1.35E-08 2.7E-10 3 8.1E-12 

1 UO2 fuel. Burnup 40 GWd/tHM irradiated in a PWR, 4 cycles of 1 year. Cooling time 4 years.

2 Dissolution of a small sample 0.25 g. Final volume 50 ml 

3 Cera et al. (2003)  

 

Considering the analytical figures of the TRUFAST system coupled to ICPMS and the values 

summarised in Table 2, it is clear that the method developed can be applied for the determination of Sr 

in leachates of spent fuel in ground water. In spite of the presence of some elements interfering at m/z 

90, those elements are not retained in the column and have no impact on the quantitative determination 

of 90Sr. The influence of the abundance sensitivity of 88Sr will only depend of the total concentration of 

natural Sr in the ground water used for the leaching experiments. Indeed, the concentration of 88Sr in 

the spent fuel is of the same order of magnitude as 90Sr. 
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Updated Work Program 
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Abstract 

The State-of-the-Art report on fast / instant release of activation and fission products from spent 

nuclear fuel is documented by a summary of results obtained from more than 100 published 

experiments. All authors refer to a definition of the fast / instant release as a fraction of the inventory 

of some segregated radionuclides that may be rapidly released from the fuel and fuel assembly 

materials at the time of canister breaching. In the context of safety analysis, the time of mobilization of 

this fraction can be considered as an instantaneous release of some radionuclides at the containment 

failure time, even when the real release occurs during few weeks, months or years.  

 

Introduction 

The Collaborative Project “Fast / Instant Release of Safety Relevant Radionuclides from Spent 

Nuclear Fuel (FIRST-Nuclides)” contributes to the progress towards implementing of geological 

disposal in line with the Vision Report and the Strategic Research Agenda (SRA) of the 

“Implementing Geological Disposal – Technology Platform (IGD-TP)”. It falls within the 7th 

Framework Programme Topic Fission-2011-1.1.1. FIRST-Nuclides project started in January 2012 and 

extends over three years.  

The consortium consists of 10 beneficiaries, six of which can provide with experimental facilities 

having specialized installations and equipment for working with highly radioactive materials and the 

other four are organizations having specific knowledge. 8 institutions havejoined the project as 

associated groups and the end-user group is created by 6 members.  
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The fast / instant release fraction of radionuclides from spent fuel was investigated in the frame of 

national research programmes and in previous European projects: SFS (Poinssot et al., 2005; Johnson 

et al., 2004), NF-PRO (Sneyers, 2008) and MICADO (Grambow et al., 2010). There are still some 

remaining open issues derived from these investigations. Actually during the MICADO project, the 

following information was described as missing: 

‐ Understanding of the distribution of fission gas release (FGR) and deriving more realistic 

relationships between FGR and release of various fission products. 

‐ Relationships between the FGR and iodine release for LWR fuel.  

‐ Quantification and modelling of long-term retention of fission products on grain boundaries.  

‐ Quantification of the IRF for high burn-up fuel. 

‐ Chemical speciation of the relevant elements especially chemical form of 14C. 

 

Objectives of FIRST-Nuclides 

The objectives of FIRST-Nuclides are defined considering the outcomes of the previous European 

projects and publications. Thus, the main objective of the present collaborative project is to improve 

the understanding of the fast / instant release of radionuclides from high bur-up spent UO2 fuels from 

LWRs in geological repositories. 

The overall objectives of CP FIRST-Nuclides are the following: 

‐ To provide for improved data for the fast/instant release fraction for high burn-up spent 

UO2 fuel 

‐ To establish correlations between the experimental FGR and the fast/instant release of non-

gaseous fission products, in particular 129I, 79Se and 135Cs 

‐ To reduce uncertainties with respect to the fast/instant release of 129I and 14C 

‐ To determine the chemical form of the relevant elements in order to evaluate retention 

processes 

 

Description of the fuel 

The spent nuclear fuel of interest in the investigations of FIRST-Nuclides project is UO2 fuel with a 

burn-up of around 60GWd/tHM. The selected fuels, representative for present PWRs and BWR, have 

grain sizes of 10-20 µm, densities of 10.0-10.8 g/cm3 and pore sizes in the range of 5 to 80 µm. 



1st AW Proceedings - 7th EC FP - FIRST-Nuclides  Valls et al. 

155 

In the following table, the characteristics of the fuel that will be used in the FIRST-Nuclides 

investigations are detailed. 

 

Table 1. Fuel data under investigation from PWR and BWR 

 PWR BWR 

Discharge 
(manufacturer)  

 1989 -2008 
(AREVA) 

2005 – 2008  

(AREVA/Westinghouse)

Cladding 

Material 

Diameter 

Thickness (mm)

Zry-4-M5  

 9.50 - 10.75  

 0.62 - 0.73 

Zyr 2  

 9.84 - 10.2 

 

Pellet 

Enrichment(%)  

Grain size (µm) 

Density (g/cm
3
) 

2.8 - 4.3  

 5 - 40  

 10.41 

3.5 - 4.25 %  

 6 - 25  

 10.52 

Irradiation  
BU (GWd/t)  

Cycles 

45 - 70.2  

2 - 14 

50.2 – 59.1  

5 - 7 

Linear Power  Average (W/cm) 186 - 306 160 -200 

FGR  (%) 4.9 – 26.7 1.4 – 3.1 

 

Structural and chemical processes in nuclear fuel 

The Fast /Instant release fraction is highly affected by processes occurring in the fuel pellet during the 

irradiation period and its storage, determining both the micro and macrostructure of the spent fuel rod. 

Once the water reaches the spent fuel pellet, the proportion of radionuclide release will be influenced 

by their location in the pellet and their chemical form.  

During the irradiation period, the pellet suffers several structural changes: 

‐ Macroscopic fragmentation of the pellet (in ~15 fragments) due to steep thermal gradients 

developed under irradiation and because of low thermal conductivity (Ferry et al., 2006). 

During irradiation the pellet temperature can be as high as 1700°C at the center of the pellet, 
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decreasing to about 400°C (regulatory guidance limit (NRC, 2003)) at its rim or outer 

boundary.  

‐ Decrease of pellet/cladding gap as a result of retention of fission products in the fuel matrix 

that causes swelling of the fuel pellet. The volume gap for pellet is ~ 0.07 cm3 and this can be 

reduced down to 0.01 cm3 with BU = 40 MWd/kgU and even disappear for BU > 47 MWd/kgU 

causing pellet-clad mechanical interaction (PCMI) (Forsyth, 1997). 

‐ Radial zonation of the pellet with the formation of a rim structure due to higher local BU for 

average pellet BU > 40MWd/KgU with thickness from ~40 to ~250 µm (Martínez-Esparza et 

al., 2009). Due to the greater amount of fission products and defects generated in the pellet rim, 

a recristallization process takes place resulting in an structure with smaller grain sizes (0.1 to 

0.5 µm), high porosity (15%) and smaller lattice parameter making the structure fairly resistant  

to fracturing despite the high porosity (Spino and Papaioannou, 2008). 

‐ Longitudinal zonation due to heterogeneous burn up along the rod presenting lower BU at the 

endings of the rod (Dehaudt et al., 2000). 

The chemical stability of the fission products in equilibrium with UO2±x, can be classified into four 

main groups (Kleykamp, 1985): 

‐ Elements soluble in the spent fuel matrix including actinides, lanthanides, rare earth elements 

and elements forming soluble oxides, such as Zr, Nb, Sr.  

‐ Elements forming insoluble oxides in the matrix: Rb, Cs, Ba, Zr, Nb, Mo, Te. 

‐ Fission products that form metallic precipitates: Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te. 

‐ Fission gases (Kr, Xe, He) and volatile fission products (I, Br, Rb, Cs, Te) 

The distribution of fission products in the spent fuel rod is determined by the radiological inventory 

and by the structural changes. In terms of fast/instant release fraction, it is important to know those 

radionuclides incompatible with the matrix and located in the gap and grain. Experimental 

determinations show that fission gases, volatile fission products and other fission products such as Mo, 

Tc and Sr are mainly in these areas. Thus, when water contacts these radionuclides they will be rapidly 

released. 

 

Investigations on fast/instant release fraction 

Data obtained from different leaching experiments with spent fuel (UO2 and MOX) performed during 

the last 30 years are compiled in the FIRST-Nuclides deliverable D5.1 (Kienzler et al., 2012).  
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Initially, investigations on fast/instant release fraction were done with spent nuclear fuel with a 

maximum burn up of around 50 GWd/tU . It has been observed that the average burn up of SNFs used 

in those studies is progressively increasing with time (Figure 1). Last investigations have been 

performed mainly using SNF with burn up higher than 45 GWd/tU. 

 

Figure 1: Spent fuel burn up used in leaching experiments during the last 30 years 

 

About 100 experiments have been compiled in the review and most of them have been done with PWR 

spent fuels with burn up between 41 and 50 GWd/tU (Figure 2). There is relatively less measurements 

of fast/instant release for MOX spent fuel. All these experimental data have been reported in 30 

different publications. Therefore, the scarcity of data concerning high burn up fuel highlights the need 

to study these fuels currently being discharged from nuclear power stations.  
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Figure 2: Number of experiments performed with different SNF and BU 

 

Radionuclides considered in that review exercise are rubidium, caesium, strontium, iodine, 

molybdenum and technetium. In the following figure (Figure 3), it is represented the amount of 

measurements reported in the reviewed publications for each radionuclide taking into account if the 

measurement stands for the release from the gap or from the grain boundaries (gb). 

 

Figure 3: Number of measurements of IRF of different radionuclides from the gap and the grain 
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Figure 3 shows that most of measurements are focused on the release of caesium from the gap 

although several experiments have measured the instant release of strontium from both the gap and 

grain boundaries. As most of the studies have been performed with PWR spent fuels, IRF data are also 

mostly for this kind of fuels. Only few data of IRF are obtained from MOX spent fuels.  

 

Conclusions 

Significant improvements in the understanding of the performance of spent fuel under repository 

conditions have taken place. However, most of the published data on fast/instant release fractions 

relates to fuel with burn-up values below 45 GWd/tU. Over the next years the average burn-up will 

increase, reaching average values of about 60 GWd/tU. For that reason, FIRST-Nuclides focus on 

improving the understanding of the fast/instant release of radionuclides from high burn-up spent fuels. 

Further steps consist on update the present database with data produced in the FIRST-Nuclide project 

to improve the database of IRF for fission and activation products and to correlate fission gas release 

measurements with other fission products considered to be low confined in the spent fuel matrix  
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Abstract 

This work is dealing with the understanding of the corrosion mechanisms at solid/solution interface 

and taking into account for the 4He2+ ions irradiation effects on these mechanisms. These corrosion and 
4He2+ ions radiolysis phenomena append at solid/solution interface and will be studied at a µmetric 

scale by the Raman spectroscopy. Moreover, a 4He2+ ions irradiation affects a small low volume and 

allows us to control the irradiated area (solution, solid or interface). For the solid, the chemical species 

induced by 4He2+ ions radiolysis of water are reactive and are involved in classical corrosion 

mechanisms of UO2. Moreover, we want to study the impact of the 4He2+ ions radiolysis of water 

layers physisorbed into the surface onto corrosion mechanisms. That is the reason why we want to use 

a local irradiation, allowed by the 4He2+ ions ion beam provided by the ARRONAX cyclotron (E = 

64.7 MeV). In this work an experimental apparatus will be performed in order to characterize 

solid/solution interface at µmetric scale by Raman spectroscopy under 4He2+ ions irradiation provided 

by the cyclotron ARRONAX facility. The leaching experiments under irradiation will be performed 

for a short time in order to study the parameters during the fast instant release step. The grain 

boundaries effect will be studied by the comparison between one TRISO particles set (solids with 

grain boundaries) and one TRISO particles set previously washed by one acid solution (solid without 

grain boundaries). The role of H2 will be studied by the comparison between experiments under Ar or 

Ar/H2 atmosphere. The dose rate range will be between 0 and 100 Gy/min by using the alpha ion beam 

which let us control the dose set down into the sample. For all these experiments, measurements will 

be performed by the in situ Raman spectroscopy during the irradiation in order to follow the 

formation/consumption of the secondary phases formed onto the solid. The SEM will be performed in 

order to characterize the grain boundaries and the secondary phases formed by the leaching/irradiation 

experiments. The µGC is used to measure the PH2 into the irradiation cell to follow the 
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production/consumption of this gaseous species formed by the water radiolysis and consumed by the 

leaching process.  

 

Introduction 

This paper deals with the radiolytic corrosion at the UO2 surface. We study the impact of the water 

radiolysis on the corrosion of the grain boundaries (GB) detected at the TRISO particle surface. 

Moreover, the H2 influence onto the corrosion is studied. In more details, the conditions of these 

experiments are described below: 

 UO2 TRISO particle natural: This work deals with the impact of the GB present at the UO2 TRISO 

particle surface. We want to study the effect of the GB onto the dissolution (It has been already 

shown that for ThO2 TRISO particles it is the GB which control the solubility (Vandenborre et al., 

2010). Moreover, information provided on the GB impact on the UO2 TRISO particle dissolution 

can be relevant for the instant release fraction because IRF is linked to the GB phase onto the Spent 

Fuel surface. 

 Pure water irradiated: We want to study the effect of the radiolysis, classically induced by the high 

burn-up spent UO2 fuel, by an external alpha beam with a large scale of dose rate (between 0 and 

100 Gy/min) in order to study the radiolytic dissolution of UO2 and its secondary phases. 

Moreover, the dose rate of about 25 Gy/min corresponds to the dose rate delivered by the high 

burn-up spent UO2 fuel (Grambow et al., 2010). Then, we study the solid surface dissolution by the 

water radiolysis coming not from the high burn-up spent UO2 fuel but by a controlled alpha beam. 

This alpha beam is controlled for the dose rate, the localisation of the 30 µm layer irradiated (in 

water, onto the surface, into the GB…) in order to determine the impact of this localisation onto the 

IRF. Moreover, the water radiolysis produces molecular species such as H2O2 which play a non 

negligible role into the UO2 corrosion mechanism as described in the literatura (Corbel et al., 2001; 

Ekeroth et al., 2006; Jégou et al., 2005; Jonsson et al., 2004; Roth and Jonsson, 2008; Suzuki et al., 

2006). 

 H2 effect: This is studied either induced by the water radiolysis or initially merged in the system 

during the dissolution of the GB. In fact, we are able to measure the H2 produced or consumed by 

the radiolysis/dissolution mechanisms and to bring information onto the reactivity of the IRF vs. 

the H2, in particular at 0.02 M (=0.16 bar) corresponding to experimental conditions performed in 

previous European Projects (MICADO, SFS). Moreover, the H2 quantity implied during the 

dissolution of GB phases can be measured. 
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 UO2 secondary phases characterization and evolution can be followed by in situ Raman 

spectroscopy. The kinetics (from a few minutes to a few days) of formation/consumption of the 

secondary phases onto the UO2 surface (with a localization at the GB by µ-Raman technique) give 

data onto the formation/consumption of the instant release fractions. Raman experiments have been 

successfully performed onto the UO2 surface with good results for the determination of schoepite 

and studtite phases at the UO2 surface as described in the literatura (Amme et al., 2002; Biwer et 

al., 1990; Carbol et al., 2005; Corbel et al., 2006; Eary and Cathles, 1983; Hanson et al., 2005; He 

and Shoesmith, 2010; Sattonnay et al., 2001). 

Also, this work can answer to the GB formation, depletion, evolution, reactivity vs. alpha external dose 

rate, [H2] at the UO2 surface for the FIRST-Nuclides Project. Moreover, it seems relevant for the 

retention process to know the secondary phases formation/depletion by the radiolytic chemical 

reactions and the effect of H2 onto these phases. 

 

Material and Methods 

Samples 

UO2 TRISO particles are purchased by Pr. Fachinger from FZJ and the synthesis detailed in (Brähler et 

al., 2012) with, in particular, a calcination step which was performed at 1600°C for UO2 

crystallization. Physico-mechanical characterization and first solubility tests have been  performed 

(Bros et al., 2006; Grambow et al., 2008; Titov et al., 2004).  

Solid analysis is performed by SEM (scanning electron microscopy, JEOL 5800 SV with a 15 kV 

voltage) and the SEM samples were covered by a Pt layer in order to improve electron conduction and 

increase the picture resolution. Mechanical separation of C-layers from the UO2 spheres is performed 

in order to analyse the sphere (Figure 2). Table 1 shows the properties of the UO2 spheres after the 

separation step. Moreover, we have checked by EDX that the chemical composition of the sphere 

surface is only UO2. 
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Irradiation experiments 

4He2+ ions irradiations are provided by the ARRONAX cyclotron facility (Saint-Herblain, France) onto 

a vertical beam-line. Experiments are carried out within the ARRONAX cyclotron at 64.7 MeV. The 

intensity of the particles beam, measured on an internal Faraday cup located one meter upstream, is 

maintained at 70 nA. The uncertainty of that current measurement is about 10%. Fricke dosimetry 

(Fricke and Hart,1996) is used in this study in order to determine the dose deposited into the samples. 

This method is based on the oxidation of Fe2+ to Fe3+ by the species produced by the water radiolysis 

reactions. The concentration of ferric ions is monitored by UV-Vis measurements at 304 nm (ε = 2197 

L.mol−1.cm−1, 298 K) with a spectrophotometer CARY4000 (VARIAN). These measurements are 

carried out on samplings few minutes after irradiation. Super Fricke solutions are prepared by 

dissolving the desired quantity of Mohr’s salt ([Fe2+] = 10 mmol/L) and NaCl (1 mmol/L) in aerated 

aqueous 0.4 mol/L H2SO4 solutions. All reagents are analytical grade or equivalent. NaCl is added in 

order to avoid any organic impurities. The irradiation time is a few minutes for ARRONAX 

experiments. The dose rates were measured at 7500 Gy/min during irradiation in the ARRONAX 

facility using the ferric ion radiolytic yield extrapolated from the literature (Costa et al., 2012) (G(Fe3+) 

= 5.0 10-7 mol/J for E = 5.0 MeV and G(Fe3+) = 11.7 10-7 mol/J for E = 64.7 MeV). 

At the ARRONAX cyclotron, 2 ml of solution is introduced into the irradiation cell. Due to the small 

penetration depth of 4He2+ ions in water, the irradiated volume fraction is small.  

In situ Raman experiments 

The Raman system is purchased from the HORIBA Jobin-Yvon Company. Raman spectra are 

recorded with an iHR550 spectrometer equipped with two optic fibers (diameter = 100 µm, length = 20 

m). The detector is a charged coupled device (CCD) cooled by Peltier effect (203 K). Raman spectra 

are excited with a laser beam at 632.8 nm emitted by a He/Ne Laser. The laser beam is weakly focused 

on samples with a diameter of about 1 mm and a power of about 14 mW for a working distance of 40 

mm on the sample and an acquisition time of 2 minutes. The Raman backscattering is collected 

through an objective system and dispersed by 1200 groves/mm gratings to obtain 5 cm-1 spectral 

resolution for Raman stokes spectra excited at 632.8 nm. The wavenumber accuracy was checked and 

considered better than 0.5 cm-1. 

With the Raman spectroscopic device (laser excitation and back scattering Raman) described before, in 

situ experiments have been performed onto the solid samples in contact with ultrapure water. Figure 3 

displays the device installed onto the 4He2+ beam line. The 4He2+ ions beam is provided by the 

ARRONAX cyclotron facility with E = 64.7 MeV. The average length of the 4He2+ particle for this 
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Abstract 

Non-destructive analysis is an essential set of analyses for validation of the fuel rod safety and 

provides a valuable basis of information to plan and implement successful sampling. In a first step the 

pin was inspected visually for defects. These results were complemented by -spectrometric 

measurements along the fuel pin. This provided first information about the actual pellet positions in the 

pin and the burn-up axial profile. 

 

Introduction 

During reactor operation a fuel rod is exposed to conditions which lead to complex alterations in the 

fuel, but also in the cladding material. Heat and fission products (FP) are produced by nuclear fission 

in the fuel. Due to the high temperature the cladding can creep and the generated FP cause a swelling 

of the fuel (Olander, 1976; Franklin et al., 1983). New isotopes are created by neutron activation not 

only in the fuel but, also in the structural materials. Hydrogen and irradiation can cause embrittlement 

of the cladding (Bertolinoa et al., 2002; Daum et al., 2001). As a consequence of these solicitations 

defects can be generated in the rod. The first step in analysis of spent fuel rods is the non-destructive 

testing (NDT). NDT is an essential set of analyses that allows to consistently acquire reliable data 

needed for validation of the safety and efficient performance of the fuel rod in pile and to provide a 

valuable basis of information to plan and implement successful destructive post irradiation 

examination (PIE) (Papaionnau et al., 2012) In the following, the NDT performed on a PWR (Gösgen, 

Switzerland) UOX fuel segment with a burn-up of 50.4 GWd/tHM is described. Details of the 

irradiation are given in (Metz et al., 2012). The examinations have been carried out in the hot cells of 

JRC-ITU (Wegen et al., 2012a). 
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Analyses of a fixed energy range corresponding to a particular emission energy are associated with a 

nuclide (for example the 661.6 keV line for 137Cs) for its qualitative and quantitative determination. 

The impulses provided by the Ge-counter are analysed simultaneously 

 by a multi channel spectrometer, 

 by a rate meter provided with an analogue output proportional to the counting rate of the 

detector. 

 

Experimental Procedure 

Background 

Before or after each measurement, keeping exactly the same conditions, the background spectrum is 

obtained and the total γ-ray intensity is counted. These are subtracted from the raw data for the rod to 

calculate the real (net) pin data. 

 

Energy Calibration 

The  -spectroscopy system is calibrated using 137Cs and 152Eu sources at the beginning of each 

measurement series or when a measurement parameter is changed (e.g. amplification gain, 

displacement of the detector, use of other collimator aperture). Three known energy lines (for instance 

the 152Eu lines at 344, 778 and 1408 keV) covering the whole range are measured and put on the graph 

“measured vs. reference” peak positions. If the standard deviation of the linear regression does not 

exceed 2 keV, the calibration is accepted. Otherwise the calibration is repeated. 

 

Efficiency Calibration 

The efficiency calibration is carried out with a known, certified source 137Cs with homogeneous 

surface activity distribution, with same form, geometry and similar chemical composition (to guarantee 

identical absorption effects) as the fuel pin. The quantitative determination of the isotope is performed 

after subtracting the background signal. 
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Control of measurements 

Before the measurement of a fuel rod, it is necessary to control the following measuring conditions:  

i) Reproducibility of the data acquisition system using a calibrated 137Cs-source (with activity 

of 1.113·109 Bq). 

ii) Preliminary identification of the spectrum peaks and expected intensity, so that no overflow 

of the detection system takes place during the measurement. The γ-counting rate should not 

exceed 15,000 counts/sec. If necessary, the counting rate can be attenuated. 

The measurements cover the energy range 50 to 2200 keV. 

 

Procedure of the measurement 

The fuel rod is placed horizontally on the metrology bench and pushed at a defined depth in the fixing 

mandrel centring. The fuel rod is translated during the measurement in front of the collimator (with 

aperture of 1.2 mm) and the Ge-detector. The impulses generated by the detector’s Ge crystal are 

treated simultaneously: 

- by a multi-channel spectrometer for nuclide identification. The γ-spectrum is obtained for 150 s 

time intervals and corresponds to a pin length of 5 mm. 

- by a rate meter. Here it is measured the total γ-ray intensity for the complete wavelength range to 

determine the axial distribution of γ-emitters. The length-relevant resolution of the measurement 

depends on the collimator aperture. The analogue output of the rate meter is measured 

continuously with a multi-meter; an ADC changes this output to digital and the signal is also 

recorded on the hard disk of a computer. The scanning rate of the digital signal was one value per 

second and the translation speed of the fuel rod 2 mm/min. The modifying factor of the rate meter 

is 3000 with an analogue output range from 05 V. 

For every isotope choice the axial distribution of the corresponding activity is recorded on the hard 

disk of a computer.  

During the measurement no changes in the cell environment that could affect the γ-background level 

are permitted. 

Laser length measurement is carried out in parallel with a precision of  0.01 mm and the 

reproducibility of  0.05 mm. 
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A detailed analysis of the -scan rate was carried out and provided length data of the pellets after 

irradiation. They are summarised in Table 1. The average pellet length (mean peak distance) was 

11.3 mm for the “natural” UO2 and 11.5 mm for the “enriched” UO2.  

The fuel properties are given by Metz et al. (Metz et al., 2012). The pellet length before irradiation can 

be estimated from the length of the fuel stack plus the length of the isolation pellets which is given 

with (439 ± 0.5) mm in the technical drawing of this fuel rod segment by the fuel manufacturer. The 

length of the bottom side isolation pellet is given with 3 mm. We assumed an uncertainty of 0.5 mm. 

The length of the top end isolation pellet (iso1) is adjusted so that the total length of (439 ± 0.5) mm is 

obtained. The length of iso1 is (4.9 ± 0.5) mm (see Table 1) and a total fuel stack length of 

(431.1 ± 0.9) mm is deduced. There are 38 pellets in the stack i.e. an average length of 11.3 mm per 

pellet before irradiation. Assuming the same length for natural and enriched pellets, the enriched fuel 

stack length is (408 ± 1) mm.  
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Table 1: Determination of pellet positions of segment N0204 from -scanning data 

 

 

 

calculated results:
number of gaps found: 39
number of pellets (enriched U): 36
number of pellets (natural U): 2

total fuel stack length: 435.0 mm
enriched U fuel stack length: 412.4 mm
mean peak distance(PD) enriched U: 11.5 mm
mean peak distance(PD) natural U: 11.3 mm

description position(bot end=0) distance
mm mm

pin top end 538.3 2.8
1st data point measured at pin top end 535.5 10.0

spring 525.5 69.2
iso1 (measured REFERENCE POINT) 456.3 4.9

fuel stack top end 451.4 ---
natural UO2     II 440.0 11.3

enriched UO2   36 428.9 11.2
35 417.5 11.4
34 405.9 11.6
33 394.7 11.3
32 383.0 11.6
31 371.5 11.5
30 359.9 11.7
29 348.5 11.3
28 337.1 11.4
27 325.6 11.6
26 314.3 11.3
25 303.0 11.3
24 291.3 11.6
23 279.7 11.6
22 268.3 11.4
21 256.9 11.4
20 245.3 11.6
19 233.7 11.6
18 222.2 11.5
17 210.9 11.3
16 199.4 11.5
15 187.9 11.5
14 176.1 11.8
13 165.0 11.1
12 153.6 11.4
11 142.1 11.6
10 130.7 11.4
9 119.3 11.4
8 107.6 11.6
7 96.1 11.5
6 84.7 11.4
5 73.3 11.5
4 61.9 11.4
3 50.3 11.6
2 38.9 11.4
1 27.7 11.2

natural UO2     I 16.4 11.3
fuel stack bottom end 16.4 ---
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For PWR fuel rods with a burn-up of 50.4 GWd/tHM the expected volume swelling is in the range of 

3.0 to 3.5% considering a volume swelling rate between 0.06 and 0.07 %/GWd/tHM (Guérin, 1999). 

The linear fuel swelling calculated from the “enriched” UO2 fuel stack lengths before and after 

irradiation (Table 1) is (1 ± 0.2)% or expressed as volume swelling (3.0 ± 0.7)%, which matches the 

expectation. The natural UO2 fuel pellets remain in the range of ±0.2 mm unchanged. 

 

Conclusions and Future work 

Visual inspection of the fuel segment has shown no larger defects, but some helicoidal and 

longitudinal scratches on the cladding. At the positions of the fuel pellets, a colour change is visible in 

the cladding, which can be attributed to increased cladding oxidation in this area. -scanning has 

shown a homogeneous burn-up along the pin with a very small decrease towards the bottom end. 

Furthermore, the positions and the number of fuel pellets as well as the spring in the plenum were 

determined.  

Further examinations of this segment are described in (Wegen et al., 2012b). 
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Abstract 

The fuel segment is examined for deformations and other defects of the cladding. The oxide thickness 

along the segment’s cladding is determined and it is shown that the results are in good agreement with 

-scanning data. Assumptions about the temperature profile along the segment are derived. 

 

Introduction 

As pointed out elsewhere (Papaioannou et al., 2012) non-destructive testing (NDT) is an essential set 

of analyses that allows to consistently acquire reliable data needed for validation of the safety and 

efficient performance of the fuel rod in pile and to provide a valuable basis of information to plan and 

implement successful destructive post irradiation examination (PIE). During reactor operation a fuel 

rod is exposed to conditions which lead to complex alterations in the fuel, but also in the cladding 

material. Heat and fission products (FP) are produced by nuclear fission in the fuel. Due to the high 

temperature the cladding can creep and the generated FP cause a swelling of the fuel (Olander, 1976; 

Franklin et al., 1983). Hydrogen and irradiation can cause embrittlement of the cladding (Bertolinoa et 

al., 2002; Daum et al., 2001). As a consequence of these solicitations defects can be generated in the 

rod. In the following, the defect determination performed on one of five segments of a segmented 

PWR (Gösgen, Switzerland) UOX fuel rod with a burn-up of 50.4 GWd/tHM is described. The fuel 

stack consists of 36 “enriched” UO2-pellets plus one natural UO2 pellet at top and bottom end (Wegen 

et al., 2012b). Details of the irradiation are given in (Metz et al., 2012).The examinations have been 

carried out in the hot cells of JRC-ITU (Wegen et al., 2012a). 
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Profilometry 

Profilometry is used to quantify the combined effects of cladding creep and fuel swelling as well as the 

evaluation of rod ovalization and detection of any geometrical anomaly. The measurements are 

generally made using inductive transducers following calibration on certified standards in the diameter 

range of interest. 

For this purpose the fuel rod is put horizontally on the metrology bench and pushed at a defined depth 

into the fixing mandrel centring. The fuel rod is simultaneously translated and rotated during the 

measurement and crossed through the knife edge contacts of the LVDT (linear variable differential 

transformer) gauge. Following parameters are used: 

Spiral rotation: 2 mm advance per rotation 

Translation speed: 1000 mm per hour 

Measurement precision:   3 µm 

Complementary this measurement was repeated two times without rotation with the same translation 

speed, the angular position of the knife edge were changed by 90 degrees to one another. 

The outputs of the LVDT gauge (diameter measurement) are recorded continuously via data logger on 

the connected computer and stored in electronic media. Scanning rate of the data logger was one value 

per 0.25 s. 

Reference standards with diameter similar to the nominal value (10.5, 10.6, 10.67, 10.70, 10.75, 10.8 

and 10.85 mm) were used for the calibration of the LVDT gauge. 

Laser length measurement is carried out parallel to profilometry, defect and oxide thickness 

determination with a precision of  0.01 mm and the reproducibility of  0.05 mm. 

Results of the examination 

The measured diameter of the segment and the pellet positions are shown in Figure 1a. A creep down 

of the zircaloy cladding is visible. An overview about in-reactor creep of zirconium alloys is given in 

(Adamson et al., 2009). The diameter before irradiation was 10.75 mm the measured average diameter 

along the fuel stack is about 10.71 mm. The mean diameter is smaller at the fuel stack ends than in the 

middle of the stack (Table 1). The measured curve shows a periodical change of the diameter along 

the fuel stack. The positions of the maxima of the averaged diameter curve (average of 80 data points) 

match very well with the positions of the pellet/pellet interfaces obtained from -scanning. The minima 

are always located at the centre of a pellet (Table 1). The difference between minimal and maximal 
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diameter is along the stack of the originally enriched UO2 pellets in the range of 13 to 20 µm. At the 

position of the natural UO2 pellets the average cladding diameter decreases about 20 to 30 µm. The 

profiles along the fuel stack of the average minimal and of the maximal diameter reach a maximum 

250 to 350 mm from the bottom end of the segment. Here the diameter is 25 to 30 µm larger compared 

to the positions of the first and last "enriched" UO2 pellets. The segment shows a slight ovalization. 

 

Defect Determination 

Eddy current examinations are carried out to detect defects present in the cladding, such as cracks, 

variable thickness, corrosion, etc. Geometrical or structural heterogeneities in the cladding (crack, 

corrosion, etc.) modify the eddy current path. These variations of the eddy current generated in the 

examined part by the alternating field of a coil are assessed. 

 

Experimental procedure 

The fuel rod is put horizontally on a metrology bench and pushed at a defined depth in the fixing 

mandrel centring. The fuel rod is translated during the measurement at a speed of 100 mm/min and 

moved through an encircling coil. The standard coil frequency of 300 kHz can be preferably adjusted 

depending on the depth of the detected defect.  

The measurement is calibrated using standards of the same material under examination with following 

pre-set defects:  

 1, 2, 4 holes of 1 mm diameter 

 internal groove 0.1 mm thick 

 outer groove 0.1 mm thick 

 swelling 0.1 mm 

A calibration is made before each measurement (Figure 1a). 

As can be seen are the phase shift of the X- and Y-signals (see Lissajous pattern in Figure 1a) affected 

by the type of the simple standard defects while the amplitude gives information about the defect size. 

The defect length can be derived from the position of the minima and maxima of the signals along the 

tube length. The characterisation of “natural” defects from measured data is complex (Auld and 

Moulder, 1999). 
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of the probe from the ferromagnetic material. This effect is used to measure the layer thickness at the 

surface of fuel rods after calibration with tubes, identical in geometry and nature to the rod cladding. 

Procedure of the measurement 

The fuel rod is put horizontally on a metrology bench and pushed at a defined depth in the fixing 

mandrel centring. The fuel rod is simultaneously translated and rotated during the measurement, which 

is carried out by means of eddy current using a punctual coil unit touching the outer surface of the 

cladding. 

 Spiral rotation:  5 mm advance per rotation 

 Translation speed:  20 mm per minute 

Scanning rate of the data logging was one value per second. 

The measuring system is calibrated using standards consisting of oxidized rods of the same material 

under examination. The thickness of the standard’s oxide layer is certified by the manufacturer 

(AREVA-NP). 

Calibration control is carried out before each fuel rod examination. The precision of the translation is 

± 0.05 mm/metre and ± 5° for the rotation. The precision of the oxide layer thickness measurement is 

± 2 µm. 

The outputs of the eddy current coil (outer oxide layer thickness) and axial position are continuously 

acquired by a PC. 

Results of the oxide thickness measurement 

The measured oxide profile is given together with the total -scanning and the pictures of the segment 

in Figure 2c. The oxide profile matches with the optical appearance of the pin. Thicker oxide (35 to 

45 µm) is found in the light grey zone of the pin while at the darker grey zones at both ends the 

thickness is below 17 µm. The maximal thickness is found on the pin between 250 and 350 mm from 

the bottom end. 

Temperature is beside exposure time, water chemistry, neutron flux and others a main parameter 

controlling the oxide growth (Garzarolli and Garzarolli, 2012). Looking at the measured oxide profile 

it can be assumed that despite a relatively constant burn-up (Wegen et al., 2012b) the temperature at 

the cladding surface was lower towards both ends of the pin. 
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current testing at the pellet/pellet gap locations. The obtained results are in good agreement with those 

obtained from -scanning (Wegen et al., 2012b).  

The measured oxide thickness profile matches well with the visual nature of the outer cladding 

(Wegen et al., 2012b). Despite a homogeneous burn-up it seems that the maximum temperature of the 

cladding water interface was between 250 and 350 mm from the bottom end of the segment. This is 

supported by slight variations measured with profilometry and eddy current in the same zone. 

Table 1: Comparison of -scanning (Wegen et al., 2012a; Wegen et al., 2012b), profilometry and eddy current data 

 

 

The results achieved by NDT were used for the preparation of samples for further destructive 

examinations at JRC-ITU and IRF determinations at KIT-INE (Wegen et al., 2012c). 

 

 

 

 

description

Y-scanning:
pellet gap 
position ¹

profilometry:
max. 

diameter 
position ¹

mean diameter 
rotated (max)

calculated mean 
diameter 
difference

Y-scanning:
pellet centre 

position ¹

profilometry:
min. diameter 

position ¹
mean diameter 
rotated (min)

eddy current 
defect position ¹

 eddy current 
diameter 
difference

mm mm mm µm mm mm mm mm µm

fuel stack top end 451.4 451.4 10.683 ² 452.5 17 ²
natural UO2     II 440.0 440.2 10.713 23 ² 445.7 445.8 10.682 ² 441.4 15 ²

enriched UO2   36 428.9 429.7 10.714 13 434.5 436.9 10.699 430.0 14
35 417.5 417.9 10.718 14 423.2 423.2 10.705 418.4 14
34 405.9 406.0 10.724 18 411.7 412.4 10.704 406.4 12
33 394.7 395.3 10.721 14 400.3 400.5 10.707 395.5 13
32 383.0 383.6 10.722 16 388.8 388.9 10.708 383.9 16
31 371.5 371.7 10.724 17 377.3 377.2 10.706 371.8 12
30 359.9 359.9 10.726 17 365.7 366.2 10.708 360.8 14
29 348.5 349.2 10.727 17 354.2 354.4 10.710 349.1 13
28 337.1 337.4 10.726 15 342.8 342.8 10.711 337.7 10
27 325.6 325.6 10.724 14 331.3 331.9 10.711 326.3 14
26 314.3 314.8 10.731 20 319.9 320.2 10.709 315.0 13
25 303.0 303.0 10.729 18 308.6 308.5 10.714 303.2 13
24 291.3 292.1 10.729 19 297.1 297.5 10.708 291.8 13
23 279.7 280.4 10.729 19 285.5 285.7 10.710 280.2 14
22 268.3 268.6 10.728 20 274.0 274.0 10.709 268.9 13
21 256.9 256.8 10.724 16 262.6 263.2 10.706 257.0 10
20 245.3 245.9 10.725 18 251.1 251.5 10.708 245.5 13
19 233.7 234.2 10.723 18 239.5 239.7 10.706 233.6 13
18 222.2 222.5 10.726 19 228.0 228.0 10.705 222.4 11
17 210.9 210.7 10.725 17 216.6 216.8 10.710 211.1 12
16 199.4 199.9 10.722 17 205.2 205.3 10.706 199.3 10
15 187.9 188.1 10.721 17 193.7 193.6 10.705 188.1 9
14 176.1 176.2 10.719 16 182.0 182.7 10.703 176.2 15
13 165.0 164.8 10.722 19 170.6 171.0 10.701 164.7 14
12 153.6 153.7 10.724 19 159.3 159.3 10.703 153.2 13
11 142.1 141.9 10.725 20 147.9 148.3 10.705 141.9 14
10 130.7 130.0 10.721 17 136.4 136.5 10.703 130.4 12
9 119.3 118.7 10.717 15 125.0 125.0 10.704 118.5 13
8 107.6 106.6 10.720 21 113.5 113.1 10.699 106.9 14
7 96.1 96.6 10.717 18 101.9 102.1 10.699 95.7 12
6 84.7 84.4 10.713 17 90.4 90.1 10.699 84.4 16
5 73.3 72.4 10.713 22 79.0 78.8 10.693 72.7 15
4 61.9 60.5 10.708 19 67.6 67.9 10.691 60.6 16
3 50.3 50.0 10.703 13 56.1 55.9 10.688 49.6 12
2 38.9 37.7 10.705 14 44.6 44.0 10.693 38.3 9
1 27.7 27.7 10.703 27 ² 33.3 33.2 10.690 28.5 11 ²

natural UO2     I 16.4 15.7 10.672 ² 22.0 22.2 10.662 ² 15.9 92 ²
fuel stack bottom end 16.4
average value(1…36) 10.721 17 10.704 13

¹ ) Positions relative to the bottom end of the segment    ² ) Not included in average value



Wegen et al.  1st AW Proceedings - 7th EC FP - FIRST-Nuclides 

190 

Acknowledgement 

The research leading to these results has received funding from the European Union's European 

Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2011 under grant 

agreement n° 295722 (FIRST-Nuclides project). 

 

References 

Adamson, R., Garzarolli, F., Patterson, C. (2009) In-Reactor Creep of Zirconium Alloys. Advanced 

Nuclear Technology International, Skultuna, Sweden.  

Auld, A. and Moulder, J.C. (1999) Review of Advances in Quantitative Eddy Current Nondestructive 

Evaluation. Journal of Nondestructive Evaluation, 18, 3-36.  

Bertolinoa, G., Meyera, G., Perez Ipinab, J. (2002) Degradation of the mechanical properties of 

Zircaloy-4 due to hydrogen embrittlement. Journal of Alloys and Compounds, 330–332, 408–413.  

Daum, R. S., Majumdar, S., W. Bates, D., Motta, A. T., Koss, D. A., Billone, M. C. (2001) On the 

Embrittlement of Zircaloy-4 Under RIA-Relevant Conditions. Zirconium in the Nuclear Industry: 

Thirteenth International Symposium, Annecy, France, June 10-14, 2001, ASTM Special Technical 

Publication 1423.  

Franklin, D.G., Lucas, G.E., Bement, A.L. (1983) Creep of zirconium alloys in nuclear reactors. 

ASTM special technical publication 815, Baltimore, United States.  

Garzarolli F. and Garzarolli M. (2012) PWR Zr Alloy Cladding Water Side Corrosion. Advanced 

Nuclear Technology International, Mölnlycke, Sweden.  

International Atomic Energy Agency (2011) Eddy Current Testing at Level 2: Manual for the Syllabi 

Contained IAEA-TECDOC-628/Rev. 2 ‘Training Guidelines for Non-Destructive Testing 

Techniques’.  

Metz, V., Loida, A., González-Robles, E., Bohnert, E., Kienzler, B. (2012) Characterization of 

irradiated PWR UOX fuel (50.4GWd/tHM) used for leaching experiments. 7th EC FP – FIRST-Nuclides 

1st Annual Workshop Proceedings (Budapest, Hungary). 

Olander, D.R. (1976) Fundamental aspects of nuclear reactor fuel elements. California Univ. Technical 

Report TID-26711-P1, Berkeley, United States. 



1st AW Proceedings - 7th EC FP - FIRST-Nuclides  Wegen et al. 

191 

Papaioannou, D., Nasyrow, R., De Weerd, W., Bottomley, D., Rondinella, V. V. (2012) Non-

destructive examinations of irradiated fuel rods at the ITU hot cells. 2012 Hotlab conference 

(Marcoule, France). 

Wegen, D.H., Papaioannou, D., Nasyrow, R., Gretter, R., de Weerd, W. (2012) Non-destructive testing 

of segment N0204 of the spent fuel pin SBS1108 - Contribution to WP1 of the collaborative project 

FIRST Nuclides. JRC75272, European Atomic Energy Community, Karlsruhe, Germany. 

Wegen, D.H., Papaioannou, D., Nasyrow, R., Rondinella, V.V., Glatz, J.-P. (2012) Non-destructive 

analysis of a PWR fuel segment with a burn-up of 50.4 GWd/tHM – Part I: Visual inspection and -

scanning. 7th EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 

Wegen, D.H., Papaioannou, D., Gretter, R., Nasyrow, R., Rondinella, V.V., Glatz, J.-P. (2012) 

Preparation of samples for IRF investigations and post irradiation examinations from 50.4 GWd/tHM 

PWR fuel. 7th EC FP – FIRST-Nuclides 1st Annual Workshop Proceedings (Budapest, Hungary). 



 

 

 



 

 

PREPARATION OF SAMPLES FOR IRF INVESTIGATIONS AND POST 
IRRADIATION EXAMINATIONS FROM 50.4 GWd/tHM PWR FUEL 

Detlef H. Wegen*, Dimitrios Papaioannou, Ralf Gretter, Ramil Nasyrow, Vincenzo V. Rondinella, 
Jean-Paul Glatz 

Joint Research Centre – Institute for Transuranium Elements (JRC-ITU), European Comission 

* Corresponding author: Detlef.Wegen@ec.europa.eu 

 

Abstract 

Samples for leaching experiments at KIT-INE have been prepared from a PWR fuel segment at the hot 

cell facility of JRC-ITU. The specimens were carefully examined and some features relevant for future 

investigations were identified.  

 

Introduction 

The aim was to prepare samples for leaching experiments at KIT-INE from a PWR fuel segment with 

a burn-up of 50.4 GWd/tHM (Metz et al., 2012). For this purpose it was envisaged to cut whole pellets 

with cladding from the segment. Of special interest were natural UO2 pellets located at the top and 

bottom end of the fuel stack (first and last pellet of the fuel stack). Ideally, the segment was to be cut at 

the positions of the pellet/pellet gaps formed by the pellets dishings. 

 

Experimental procedure 

The sample preparation was carried out after non-destructive testing of the pin (Wegen et al., 2012a; 

Wegen et al., 2012b) in the hot cells of ITU (under nitrogen atmosphere with a typical oxygen contents 

< 1%). A cutting machine equipped with a diamond wafering blade (Buehler Isomet ® series 15HC) 

was used for the sectioning of the segment. The dry cutting was performed slowly without any cooling 

liquid. 

To find the exact positions of the pellet/pellet gaps a reference must be found. Therefore, the top end 

of the segment containing the spring was cut-off approximately 10 mm before the isolation pellet at the 

top end. Then the length of the top end section was measured as well as the distance from the cut to the 
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Figure 2: -scan of segment N0204 showing pellet-pellet interfaces (blue) and cut positions (red). For illustration a 
sketch of the fuel segment is also included (I and II: “natural”UO2; 1, 2,…,36: enriched UO2). 

 

Description of the specimen 

The samples were designated in the sequence of their preparation (1 to 7). To distinguish between top 

and bottom side the specimens were marked with a small notch in the cladding. Specimens 1 to 5 were 

marked at the top side while specimen 6 and 7 were marked at the bottom side. The cut positions 

relative to the -scan and the appearance of the samples are shown in Figure 3 and Figure 4. 

Specimen 1 

Specimen 1 was cut exactly at the pellet/pellet gap. Parts of the pellet dishing can be seen on the top 

and bottom side of the sample. Referring to Figure 2 it contains the “natural” UO2 pellet II. 

Specimen 2 

This specimen contains the last enriched UO2 pellet 36 from the bottom end (Figure 2). The top side 

shows parts of the dishing while at the bottom side the cut is tight at the dishing and it is cut-off. 
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Conclusions and Future work 

A reference point was successfully fixed after the cut-off of the segments top end which enables 

together with the total -scan of the segment an exact determination of the cut positions. This 

information together with photographs taken from the various cuts made a further characterisation of 

the specimen possible and some possible; specific features to be taken into account for future 

investigations were identified. 

The specimen 2, 5 and 6 are foreseen for further destructive analyses e.g. ceramography etc. 
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Abstract 

Fission gas release measurements have been performed on one of five short UOX fuel segments of a 

segmented PWR fuel rod with a burn-up of 50.4 GWd/tHM at the hot cell facilities of JRC-ITU. The 

free volume and the normal fission gas volume were determined while the isotopic composition could 

not be obtained. 

 

Introduction 

The determination of fission gas release to the plenum of a fuel pin as well as the isotopic composition 

of the gas and the measurement of the free volume of the fuel rod is important to evaluate the overall 

fuel rod behaviour during irradiation. Furthermore, it plays an important role in the context of final 

waste storage to estimate the instant release fraction (IRF) of volatile fission products at times when 

the waste after a canister failure comes in contact with groundwater (Carbol et al., 2012). 

The measurement device in operation developed at JRC-ITU consists of two main parts: i) the 

puncturing device installed inside a hot cell consisting of a drilling machine, a system of standard 

volumes and calibrated pressure gauges (Figure 1); ii) a quadrupole mass spectrometer installed 

outside the hot cell (Figure 2).  

 

Experimental 

The measurement procedure is as described in (Hoffmann et al., 2005) and in (Papaioannou et al., 

2012). 
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The PWR fuel rod with a burn-up of 50.4 GWd/tHM consisted of five closed segments which were 

mounted together. The segments were separated without opening them before the fission gas release 

measurement. For measurement the ~0.5 m long segment is introduced plenum first into the chamber 

of the puncturing station, via an aperture that is sealed with a flat rubber seal. Two expansion 

chambers with known volumes (Ve1 and Ve2) are connected to the evacuated drilling chamber with the 

fuel rod inside. They are filled with a known pressure of neon, since neon is not present in the fission 

gas. One expansion chamber is opened and the neon gas will now equilibrate between the two 

chambers while temperature and pressure change are measured. The volume of the drilling chamber 

(Vd) less the volume of the rod inside the chamber can be calculated using the law of Boyle – Marriot. 

Then the chambers are evacuated. 

 

 

Figure 1: Scheme of the puncturing device 

 

The pin is punctured with the drilling machine and the fission gas under the internal pressure of the 

fuel rod is released into the evacuated drilling chamber (Vd), where temperature and pressure are 

measured. In case of a large amount of released gas the expansion chambers are used to lower the gas 

pressure below 1 bar for measurement. To allow a complete outgassing the pressure data are taken 

after waiting for ~2 hours. The gas can be stored in the storage tanks (ST1, ST2). Additional pumping 

completes the gas removal from the rod. 
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Results 

The measurement was carried out in the second half of May 2012. The results of the pressure and 

volume determinations are summarized in Table 1 and in (Wegen et al., 2012). Because of the short 

length of the segment (~0.5 m) the fission gas volume was small compared to a normal LWR rod with 

a length of ~4 m. From the totally available 147 cm3 fission gas three batches were sampled in gas 

mice before composition determination and transferred to KIT-INE for further analysis. 

Table 1: Results of the fission gas release measurements at ITU. The volumes given are referred to a temperature of 
To = 273.15 K and a pressure of po = 1013.25 mbar. 

 

 

At JRC-ITU the composition of the remaining gas was measured by mass spectrometry. Careful data 

analysis and cross checking of the results showed that the results obtained were not significant. The 

reasons for this are most probably technical problems triggered by a too small amount of available 

fission gas. 

More reliable results concerning the gas composition should be obtainable by mass spectrometry 

analysis of the gas sample sent to KIT-INE (Bohnert et al., 2012). 

 

Conclusions 

The fission gas volume and the free volume of the fuel segment investigated were determined 

successfully. The sampled gas was shared between KIT-INE and JRC-ITU. Because the amount of 

available gas was too small the determination of the isotopic composition was not possible using the 

setup installed in ITU. 

Date: 22.5.12 Temperature: 22 °C

Operator: W.W. Leak Rate: 3.02E-03 mbar·L·s-1

Reactor: KKGg 
Pin No.: 07-63/07-47 SBS 1108//G09/G09

IRRADIATION DATA:

Average Burn-up: 50.4 GWd/t(U)

RESULTS:

Free volume of the pin: 4.2 cm3

Pressure before puncturing: 37.2 bar

Normal gas volume: 142 cm3
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THERMODYNAMICS OF FISSION PRODUCTS IN SPENT NUCLEAR FUEL3 

Ondřej Beneš 

Joint Research Centre – Institute for Transuranium Elements (JRC-ITU), European Comission 

The behaviour of spent nuclear fuel (SNF) as well as the fast release of safety relevant radionuclides 

are controlled by various phases formed under the conditions during the use of the fuel in a nuclear 

power plant. Important parameters are (i) the temperature, (ii) the composition of the fuel and (iii) the 

oxygen potential of oxide-fuel. In an ideal case, the thermodynamics should be able to describe the 

behaviour of SNF. As basis for understanding the behaviour of fission products (FP) in the fuel, the 

phase diagrams of the binary systems “U-O” and “U-Pu” as well as the ternary system “U-Pu-O” were 

discussed. For fresh nuclear fuel (U-Pu-O system), the phase diagrams are well elaborated, but that is 

not case for the complex system SNF, in which all FPs are present. A full description of phase 

diagrams including all FPs of interest is not available. Presently, the primary interest is on the volatile 

FPs and their solid/gas equilibrium.  

Thermodynamics provide information on the chemical state of FPs which influences the physical 

properties of the fuel itself, such as thermal conductivity, melting temperature, deformations, and 

swelling as well as determine the physico-chemical properties of the FP mainly their volatility and 

solubility in water. Temperature and the oxygen potential of the fuel (determined by O/M ration in 

UO2) are the key parameters with respect to thermodynamics. However, kinetics especially diffusion 

processes of the FPs is another driving force for the phase formation. As example, the Cs – I system 

was discussed in details and thermodynamic considerations were compared to Knudsen cell 

experiments. According to thermodynamics, CsI is the stable compound at T = 900K, however, the 

temperature varies by more than 500 K over the radius of a fuel pin in a nuclear power plant. 

The chemical state of a series of FPs was given including metal precipitates, molybdenum, zirconium, 

and iodine. The stable form of iodine is CsI, but due to kinetic reasons I or I2 can also be formed. 

Reaction sites where CsI can be formed are bubbles and microstructures in the UO2 matrix. At low 

burn-up (<5 GWd/t), such structures are not available, therefore the formation of CsI is not likely. The 

generation of other iodides is also possible such ZrI4 or MoI4. Due to the excess of caesium in 

comparison to iodine (Cs/I ~ 10), it is expected that almost all iodine will be in the form of CsI located 

at grain boundaries, cracks and/or fission gas bubbles. Remaining caesium reacts with zirconium, 

                                                            
3 Abstract summarized by the coordination team 
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forming Cs2MoO4 as stable Cs phase. Cs does not react with UO2 forming uranate phases, such as 

Cs2UO4, instead it reacts with ZrO2: 2 Cs (s) + ZrO2(s) + 0.5 O2(g)  Cs2ZrO3(s).  

This compound is in equilibrium with Cs2MoO4. Neither of these compounds is volatile. At oxygen 

potentials below -440 kJ/mol, tellurium reacts with Cs molybdate forming Cs2Te(s) and free oxygen 

according to Te(l) + Cs2MoO4(s)  Cs2Te(s) + O2(g) + MoO2(s).  

Rare earth elements are highly soluble in the solid UO2 matrix, forming UO2-R2O3 solid solutions. 

Significant deformation of the UO2 crystals are not observed by the presence of R2O3. Both FPs Ba 

and Sr are present in an oxidized form reacting either with UO2 or ZrO2 to give BaZrO3 and SrZrO3 

which is found as a solid solution (Ba,Sr)ZrO3. Above 1000 K, BaUO3 is formed, but no SrUO3. Sr is 

found in so called “grey phase“ consisting of (Ba,Sr)(U,Pu,Zr)O3 solid solution. At oxygen potentials 

above 400 kJ/mol and in the presence of MoO2, BaMoO4 becomes stable. 

 



 

 

CHARACTERISTICS OF SPENT NUCLEAR FUEL 

Christoph Gebhardt and Wolfgang Goll 

AREVA FUEL Business Unit (FDM-G), FR 

The talk provided information on management of UO2 fuel for Pressurized Water Reactor (PWR) and 

Boiling Water Reactor (BWR) fuels, including neutron‐physical aspects which are basis of an optimal 

usage of the fuel. The distribution of spent nuclear fuel in relation to their burn‐up ‐ as reported by the 

utilities ‐ was presented, as well as the histories of the bundle power for some reactors. These bundle 

powers depend on the reactor operation and on the number of cycles. The radial and axial burn‐up 

distribution was demonstrated for a modern 18x18 fuel assembly with 60 MWd/kgU average burn‐up. 

In this context the pellet centerline temperatures as a function of the rod’s linear heat rate and the 

temperature of the coolant were discussed for BWR and PWR fuel elements. 

The fuel pellet manufacturing processes and typical inventories of additives and impurities of fuel 

pellets were explained. Special attention was given to the typical Al (~100 ppm) and Cr (~800 ppm) 

contents in the fuel pellets. In the following discussion it was questioned whether trivalent Al and Cr 

might interact with trivalent actinides under repository conditions. With respect to the cladding, typical 

PWR and BWR fuel rod cladding materials were described and their irradiation induced alterations in 

regard to corrosion and hydrogen uptake was quantified. It was shown that an increase in burn‐up 

causes both an increase in hydrogen incorporation and an extension of the Zircaloy oxide thickness. 

The lecture included the corrosion relevant compositions of PWR and BWR cladding alloys and the 

behaviour of modern cladding materials such as M5, where the component Sn is replaced by Nb which 

shows significantly lower corrosion rates under the temperature regime of reactors. In this material, 

also the hydrogen uptake is lower. 

Furthermore, defect mechanisms under interim and final storage were discussed. During handling, 

transport, discharge operations and interim storage it is required that systematic failures of fuel rods 

will not occur and the mechanical integrity of the fuel assembly structure is retained. Systematic 

cladding failures can be avoided by limiting stress and strain of the material. If defective fuel rods are 

present, these rods need special treatment and/or confinement. 
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Under disposal conditions, temperatures and, hence, stresses are further reduced excluding systematic 

failure. Defects under thermal creep conditions are limited to small cracks leading to a prompt loss of 

rod inner pressure. In the long term, effects from He production, delayed hydride cracking and other 

post‐irradiation processe may become relevant. 

 



 

 

IMPACT OF THE IRRADIATION HISTORY OF NUCLEAR FUELS ON THE 
CORROSION BEHAVIOUR IN A DISPOSAL ENVIRONMENT 

Dani Serrano-Purroy and Jean-Paul Glatz 

Joint Research Centre – Institute for Transuranium Elements (JRC-ITU), European Comission 

Nuclear fuel becomes a very heterogeneous material during irradiation both from a structural and from 

a compositional point of view. The degree of heterogeneity due essentially to a very high temperature 

gradient (e.g. 1000°C in the pellet centre , 500°C at the fuel periphery corresponding to a distance of 

app. 5 mm) increases with burn-up and linear power. For MOX produced by a master mix blend 

technique (MIMAS), Pu-rich (25% Pu) agglomerates up to150 µm diameter are present already before 

irradiation. 

Also the composition, i.e. the content of higher actinides formed by neutron capture and the fission 

product content increases with burn-up. Furthermore the fission events are taking place more and more 

at the fuel pellet periphery, where Pu formed by neutron capture of 238U takes over from 235U as fissile 

material. Higher actinides, essentially Pu, Np, Am and Cm are produced in always higher amounts as 

the burn-up increases. For MOX where Pu is the fissile material from the beginning the built-up of 

higher actinides is even more significant (almost 10 times more compared to UO2 at the same burn-

up). Depending on their thermophysical properties, the fission products migrate in the thermal gradient 

to the fuel grain boundaries or for the most volatile elements like fission gases Xe, Kr but also Cs or I 

to the fuel periphery and depending on the irradiation conditions a more or less important part of these 

elements are even found in the fuel pin plenum after irradiation. 

Detailed post irradiation examination using optical, scanning or transmission electron microscopy, 

electron microprobe analysis, Knudsen cell, gamma scanning but also chemical analysis, allow to 

characterise the fuel changes during irradiation. Among others the development of thermal cracks, 

porosity, radiation defects due to strong  radiation are identified. The grain subdivision at the fuel 

pellet periphery (RIM effect) or the precipitation of 5 metal (Ru, Rh, Pd, Mo, Tc) particles' at the grain 

boundaries is being observed.  

It was shown that the irradiation history and here first of all the linear power reached in the fuel, is the 

dominating cause of the above mentioned phenomena, e.g. fuels run at high linear power, even if the 

burn-up is moderate, show very high release of volatiles to the fuel rod plenum. 
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It is obvious that all these modification affect the fuel corrosion behaviour in a repository in the 

situation of failure of all retention barriers, i.e. when the fuel gets in contact with ground water. 

Especially the instant release fraction, i.e. the release of highly soluble elements (Cs. I, Se, Te, Rb…) 

with a large part of the inventory transported to the fuel periphery during irradiation, can considerably 

depend on the fuel irradiation history. 

 



 

 

THE POTENTIAL OF THE TRANSURANUS CODE FOR SOURCE TERM 
CALCULATION OF SPENT NUCLEAR FUEL 

Paul Van Uffelen 

Joint Research Centre – Institute for Transuranium Elements (JRC-ITU), European Comission 

TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods during 

various operating conditions, generally referred to as a fuel performance code.  Emphasis lies on 

assessing both the temperature and the stress levels in a fuel pin, since they are linked to the crucial 

safety criteria, set by the regulators, to be fulfilled during the entire in-pile lifetime of the fuel rod. The 

code has been transmitted to various industrial partners, research organisations, as well as, safety 

authorities and universities across Europe. The corresponding know-how is also being transferred via 

international summer schools, training courses and workshops organised by JRC-ITU, as well as, 

advanced courses at several universities within the European Union. 

The TRANSURANUS code solves the equations for the radial heat transfer, the radial displacement 

along with the stress distribution in both the fuel and the surrounding cladding, and describes the 

fission product behaviour as a function of time. The equations embody the following phenomena: 

 Thermal performance: heat conduction, radiation and convection;  

 Mechanical performance: elastic deformation, creep, densification, thermal expansion, pellet 

cracking and relocation, swelling; 

 Actinide behaviour: depletion and build-up of main U, Np, Pu, Am and Cm nuclides, impact on 

the radial power profile; 

 Fission product behaviour of Xe, Kr, Cs, Nd, and He 

The lecture will treat the main equations and the associated limitations with the focus on fission 

product behaviour. More precisely, the following mechanisms will be considered in greater detail: 

recoil, knock-out & sputtering, lattice diffusion, trapping, irradiation re-solution, thermal re-solution, 

thermal diffusion, grain boundary diffusion, grain boundary sweeping, bubble migration, bubble 

interconnection and sublimation or vaporisation. For each of these mechanisms, a brief description will 

be provided along with a discussion of its domain of application. Following a description of the main 

relevant mechanisms, the various models for fission gas release and swelling in the open literature will 

be reviewed, including those which have been implemented in the TRANSURANUS code.  
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Once the behaviour of the fuel rod is computed in each axial slice, they are coupled in the code via 

balance equations for stresses and gas composition. For this reason standard fuel performance codes 

are so-called 1.5 D codes, while 2D (3D) codes solve the equations (for heat removal and stresses) 

simultaneously in two (three) dimensions. 

The TRANSURANUS code has a clearly defined mechanical–mathematical framework, in which new 

material properties and models can easily be incorporated. The code has a comprehensive material data 

bank for oxide, mixed oxide, carbide and nitride fuels, Zircaloy and steel claddings and several 

different coolants (water, sodium, potassium, lead, bismuth). Besides its flexibility for fuel rod design, 

the code can deal with a wide range of different situations, with time scales from milliseconds to years. 

Hence, TRANSURANUS can be used as a single code system for simulating both long-term 

irradiations under normal operating conditions as well as transient tests. In this way the code can be 

applied to a fuel pin segment from a commercial fuel rod that is re-irradiated in an experimental 

reactor after instrumentation, like in the Halden Boiling Water Reactor. The 'restart' mode allows 

simulating re-fabricated fuel rods, i.e. where the fill gas has been completely changed. 

TRANSURANUS also allows simulating cladding tubes without fuel submitted to heating burst tests 

in out-of-pile conditions. Finally, thanks to the restart option, the code has also occasionally been used 

to simulate storage conditions. Nevertheless, this requires the appropriate material properties for such 

conditions to be implemented, such as the expression for cladding creep in the temperature range of 

interest. 

Once the main models of the code have been presented, the verification and validation procedure of 

the code will be outlined and illustrated. More precisely, the verification of models in a stand-alone 

environment on the basis of either analytical or more complex and accurate numerical solutions 

obtained by means of more-dimensional finite element solutions will be presented. In a second step, 

the validation relies on experimental data, when available, such as, the local thermal conductivity of 

nuclear fuel as a function of burn-up and temperature, the radial concentrations of fission products 

measured after irradiation by means of electron probe micro-analysis or secondary ion mass 

spectrometry, or cladding tube diameters after burst tests that correspond to conditions during a loss of 

coolants accident. The final step of the code validation consists of a comparison against integral 

experimental data, as well as a comparison with other code predictions. Excellent opportunities for 

benchmark exercises like FUMEX-III are organised by the IAEA, or the LOCA benchmark organised 

by the OECD-NEA. 



1st AW Proceedings - 7th EC FP - FIRST-Nuclides  Van Uffelen 

221 

The widely used mechanistic approach described above leads, in many cases, to discrepancies between 

theoretical predictions and experimental evidence because some of the physical processes are of 

stochastic nature., The mechanistic approach has therefore been augmented by statistical analyses that 

apply basic probabilistic methods, such as the Monte Carlo method, in order to better understand 

uncertainties and their consequences.  

A combination of a restart and Monte Carlo statistics may be used to perform a probabilistic analysis 

only after the restart. This option may thus also be helpful for the analysis a long base irradiation of a 

fuel rod in a reactor followed by the simulation of the same rod during a transient or long term storage. 
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LONG TERM BEHAVIOUR OF SPENT AGR FUEL IN REPOSITORY  

David Hambley 

Spent Fuel Management and Disposal, Fuel Cycle Solutions, National Nuclear Laboratory (NNL), UK 

 

Background 

The majority of nuclear power production in the UK is from Advanced Gas-Cooled Reactors. The 

spent fuel from these reactors is currently being reprocessed, however the reprocessing facility is due 

to close within the next 10 years and it is anticipated that future arisings will be sent to a geological 

disposal facility towards the end of this century.  The siting and development of a geological disposal 

facility is under way and incorporates spent fuel. 

AGR Fuel 

The AGR and its fuel are unique to the UK.  Whilst the fuel in both AGR and most LWRs is uranium 

dioxide, there are many significant differences: 

 AGR fuel pellets are annual, whilst in LWR systems the pellets are solid,  

 the fuel cladding is stainless steel (20/25/Nb), whereas most power reactor system use zirconium 

alloy cladding;  

 the cladding temperature in operation is higher, up to 825°C, but peak fuel temperatures and radial 

temperature gradients are similar; 

 differences in the neutron spectrum leads to a lower rim/average Pu profile. 

 the coolant in AGRs is carbon dioxide, which produces some deposition of carbon on the fuel pin 

surfaces, this is substantially different from the ‘crud’ formed on LWR fuel pins and can lead to 

much higher fission gas release in a small proportion of the fuel pins. 

The peak fuel element burn-up is currently around 40 GWd/teU, which is somewhat lower than many 

LWRs and is unlikely to exceed 45 GWd/teU. 

Current Programme 

The UK Nuclear Decommissioning Agency are interested in investigating whether the differences 

between AGR and LWR fuel result is significantly difference fuel behaviour under repository 
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conditions.  This programme is being conducted via 6 PhDs at Cambridge University, Lancaster 

University and Imperial College.   

Inactive simulants of active FPs have been incorporated into SIMfuel replicating species at 100 years 

cooling, which have been charaterised with optical and SEM microscopy and X-ray diffraction. All 

key phases have been identified and anlyses are continuing.  This will be followed by annealing at 

300˚C and 825˚C to compare effects on FP distrobutions with LWR fuels. 

Modelling of the fission product distribution in AGR UO2 at elevated temperatures  is currently under 

way to be followed by modelling of radiation damage in U secondary mineral phases and solubility of 

FPs.  

Work is underway to induce radiation damage in SIMfuel samples and examine the effects of the 

damage on dissolution behaviour. 

Two separate investigations are underway into UO2 corrosion.  They are investigating the effects of 

cladding and cladding corrosion products on dissolution and whether a fenton cycle could be initiated.  

Other aspects include investigation of the formation and stability of UO2 secondary phases on UO2 and 

their impact on corrosion. 

Finally the radiation stability of secondary phases (particularly for alpha recoil damage) will be 

examined using XRD and 17O MASNMR, this will be followed by examination of the actinide 

substitution process: i.e. solid solubility and possible partitioning of Np or Pu. 

 



 

 

SOURCE TERM MODELLING FOR SPENT FUEL ELEMENTS IN 
PERFORMANCE ASSESSMENT 

Artur Meleshyn1, Jens Wolf1, Ulrich Noseck1, Guido Bracke2 

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, DE  
1 Brunswick, Germany 

2 Cologne, Germany 

Integrated performance assessment models of deep geological repositories for high-level radioactive 

waste (HLW) and spent nuclear fuel include a source term which describes the release of radionuclides 

from HLW or spent fuel elements (SFE) from failed containers into the contacting aqueous solution. 

The chemical release rate depends on time (kinetics), solubility of radionuclides in the solution 

(thermodynamics), and temperature. The general source term can be represented in the form: 

  XiXci rtAtntA )()()( , , where nc(t) is the fraction of the failed containers at time t, AX.i(t)  is the 

inventory of radionuclide i in component X at time t, and rX is the chemical release rate for component 

X. GRS currently utilizes two databases to model the source term with respect to the definition of the 

components and their characteristic release rates and, correspondingly, the relative inventories of 

radionuclides in the components. 

In the project Scientific Basis for the Assessment of the Long-Term Safety of Repositories, four SFE-

components are currently defined: Zircaloy, structural parts, fuel matrix, and instant release fraction 

(IRF) with the characteristic isotope-independent release rates of 0.0036, 0.002, 1.0·10-6, and 1.0 a−1, 

respectively. In comparison to the previously used SPA source term with only three SFE components 

(Lührmann et al., 2012) this source term results in significant changes in the calculated effective dose 

rate. The degree of these changes indicates also a strong dependence on the applied solubility limits, 

which were assumed for the geochemical environment of a repository, as well as on relative 

inventories of dose-determining radionuclides 36Cl, 129I, 135Cs, 226Ra, 233U, and 237Np in the 

components of SFE. 

Only three SFE-components were defined in the Preliminary Safety Analysis of Gorleben site: 

Zircaloy (including tubes and structural materials), fuel matrix, and IRF with the characteristic isotope-

independent release rates of 0.00003, 0.00365, and 1.0 a−1, respectively (Larue et al., 2012). The IRF 

of fission gas, 14C, 36Cl, 90Sr, 99Tc, 107Pd, 129I, 135Cs, and 137Cs is provided for burn-ups of 41, 48, 60, 

75 GWd/tHM. Solubility limits in highly-saline brines are provided for Zr, Tc, Sm, Th, U, Np, Pu, and 

Am and were derived from experimental and analogue studies (Kienzler et al., 2012). Solubility data 
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for other elements with radionuclides is not available. This is considered presently to be unimportant 

for performance assessment calculations (Larue et al., 2012). 

The source term used in performance assessment calculations acts directly on effective dose rate and 

performance indicators (e.g., radiotoxicity flux from repository compartments) of a repository. These 

safety and performance indicators can be used to assess the effect of high burn-up fuel on selected 

scenarios. GRS can contribute to the outcome of FIRST-Nuclides project by performance assessment 

calculations for generic repositories for HLW/SF in rock salt and claystone applying an improved 

source term using parameters for high burn-up SFE provided or derived from data by the beneficiaries 

of FIRST-Nuclides. 
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APPLICABILITY OF PAST SPENT FUEL RESEARCH IN THE US TO 
ASALT-BASED HLW REPOSITORY 

Donald T. Reed 

Earth and Environmental Sciences Division, 
Los Alamos National Laboratory (LANL), US 

 

A summary of spent fuel interaction studies in the US will be provided and evaluated in the context of 

the likely safety case for a potential salt-based HLW US repository. Past spent fuel studies were 

focused on basaltic groundwater interactions performed at Pacific Northwest Laboratory in support of 

the Basalt Waste Isolation and drip tests that were specific to the proposed Yucca Mountain site. These 

data, although appropriate for their respective safety cases do not directly address the special 

considerations possible in a low-probability brine inundation scenario where high ionic strengths, 

temperatures and irradiated high-chloride brine predominate. An assessment of how the data in hand 

can be used and the need for future experiments that address the range of options being considered in 

the US will be presented. The current status of the repository programs in the US will also be given. 

 



 

 



 

 

OVERVIEW OF USED FUEL DEGRADATION & RADIONUCLIDE 
MOBILIZATION ACTIVITIES WITHIN THE USED FUEL DISPOSITION 

CAMPAIGN 

David C. Sassani 

Sandia National Laboratories, Department 6225, Advanced Systems Analysis, US 

 

The disposition of used nuclear fuel (UNF) and high level waste (HLW) is fundamental to the nuclear 

fuel cycle in the USA. There is a need to develop strategies for managing radioactive wastes from any 

fuel cycle. Following institutions are involved in the Used Fuel Degradation & Radionuclide 

Mobilization Activities: U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) 

established the Used Fuel Disposition Campaign (UFDC) as part of its Fuel Cycle Technology (FCT) 

program. The activities include modeling and experimental work at the collaborating National 

Laboratories Sandia National Laboratories (SNL), Pacific Northwest National Laboratory (PNNL), 

Argonne National Laboratory (ANL).  

The used fuel degradation and radionuclide mobilization model concepts includes the fast release 

fraction (or instant release) inventory that includes fission products located in the fuel gap, the plenum 

regions (fission gases), accessible grain boundaries/pellet fractures. The matrix degradation inventory 

that covers the matrix itself and fission products located in the inaccessible grain boundaries/pellet 

fractures, the matrix as solid solution or dissolved within the grain structure, the noble metal particles 

(which undergo their own degradation rate once exposed) and focuses on the major rate limiting 

processes (e.g., radiolysis, matrix degradation, noble metal particle degradation). In future, coupling 

with physical degradation of cladding and mechanical evolution of degrading fuel is foreseen. 
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